These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Sustainable agricultural use of sewage sludge: impacts of high Zn concentration on on Folsomia candida, Enchytraeus crypticus, Lactuca sativa, and Phaseolus vulgaris. Martins MR; Zanatta MCK; Pires MSG Environ Monit Assess; 2023 Feb; 195(3):359. PubMed ID: 36735091 [TBL] [Abstract][Full Text] [Related]
23. Single and joint toxic effects of copper and zinc on reproduction of Enchytraeus crypticus in relation to sorption of metals in soils. Posthuma L; Baerselman R; Van Veen RP; Dirven-Van Breemen EM Ecotoxicol Environ Saf; 1997 Nov; 38(2):108-21. PubMed ID: 9417852 [TBL] [Abstract][Full Text] [Related]
24. More than just a substrate for mites: Moss-dominated biological soil crust protected population of the oribatid mite, Oppia nitens against cadmium toxicity in soil. Fajana HO; Rozka T; Jegede O; Stewart K; Siciliano SD Sci Total Environ; 2023 Jan; 857(Pt 2):159553. PubMed ID: 36270374 [TBL] [Abstract][Full Text] [Related]
25. Lanthanum toxicity to five different species of soil invertebrates in relation to availability in soil. Li J; Verweij RA; van Gestel CAM Chemosphere; 2018 Feb; 193():412-420. PubMed ID: 29154116 [TBL] [Abstract][Full Text] [Related]
26. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils. Chapman EE; Dave G; Murimboh JD Environ Pollut; 2013 Aug; 179():326-42. PubMed ID: 23688951 [TBL] [Abstract][Full Text] [Related]
27. Ecotoxicity of zinc in spiked artificial soils versus contaminated field soils. Lock K; Janssen CR Environ Sci Technol; 2001 Nov; 35(21):4295-300. PubMed ID: 11718345 [TBL] [Abstract][Full Text] [Related]
28. Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile. Bustos V; Mondaca P; Verdejo J; Sauvé S; Gaete H; Celis-Diez JL; Neaman A Ecotoxicol Environ Saf; 2015 Dec; 122():448-54. PubMed ID: 26398238 [TBL] [Abstract][Full Text] [Related]
29. The ecotoxicity of zinc and zinc-containing substances in soil with consideration of metal-moiety approaches and organometal complexes. Ritchie E; Boyd P; Lawson-Halasz A; Hawari J; Saucier S; Scroggins R; Princz J Environ Toxicol Chem; 2017 Dec; 36(12):3324-3332. PubMed ID: 28708298 [TBL] [Abstract][Full Text] [Related]
30. Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates. Santorufo L; Van Gestel CA; Maisto G Chemosphere; 2012 Jul; 88(4):418-25. PubMed ID: 22445389 [TBL] [Abstract][Full Text] [Related]
31. A comparative study of the effects of metal contamination on Collembola in the field and in the laboratory. Fountain MT; Hopkin SP Ecotoxicology; 2004 Aug; 13(6):573-87. PubMed ID: 15526862 [TBL] [Abstract][Full Text] [Related]
32. Petroleum hydrocarbon mixture toxicity and a trait-based approach to soil invertebrate species for site-specific risk assessments. Gainer A; Cousins M; Hogan N; Siciliano SD Environ Toxicol Chem; 2018 Aug; 37(8):2222-2234. PubMed ID: 29729033 [TBL] [Abstract][Full Text] [Related]
33. Mercury critical concentrations to Enchytraeus crypticus (Annelida: Oligochaeta) under normal and extreme conditions of moisture in tropical soils - Reproduction and survival. Buch AC; Schmelz RM; Niva CC; Correia ME; Silva-Filho EV Environ Res; 2017 May; 155():365-372. PubMed ID: 28273622 [TBL] [Abstract][Full Text] [Related]
34. Soil moisture influences the avoidance behavior of invertebrate species in anthropogenic metal(loid)-contaminated soils. González-Alcaraz MN; Malheiro C; Cardoso DN; Loureiro S Environ Pollut; 2019 May; 248():546-554. PubMed ID: 30831351 [TBL] [Abstract][Full Text] [Related]
35. Uptake, toxicity, and maternal transfer of cadmium in the oribatid soil mite, Oppia nitens: Implication in the risk assessment of cadmium to soil invertebrates. Fajana HO; Jegede OO; James K; Hogan NS; Siciliano SD Environ Pollut; 2020 Apr; 259():113912. PubMed ID: 31931414 [TBL] [Abstract][Full Text] [Related]
36. Wood ash application increases pH but does not harm the soil mesofauna. Qin J; Hovmand MF; Ekelund F; Rønn R; Christensen S; Groot GA; Mortensen LH; Skov S; Krogh PH Environ Pollut; 2017 May; 224():581-589. PubMed ID: 28245950 [TBL] [Abstract][Full Text] [Related]
37. Effects of deltamethrin, dimethoate, and chlorpyrifos on survival and reproduction of the collembolan Folsomia candida and the predatory mite Hypoaspis aculeifer in two African and two European soils. Jaabiri Kamoun I; Jegede OO; Owojori OJ; Bouzid J; Gargouri R; Römbke J Integr Environ Assess Manag; 2018 Jan; 14(1):92-104. PubMed ID: 28755498 [TBL] [Abstract][Full Text] [Related]
38. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content. González-Alcaraz MN; van Gestel CAM Sci Total Environ; 2016 Dec; 573():203-211. PubMed ID: 27565529 [TBL] [Abstract][Full Text] [Related]
39. Comparison of biological and chemical measures of metal bioavailability in field soils: test of a novel simulated earthworm gut extraction. Smith BA; Greenberg B; Stephenson GL Chemosphere; 2010 Oct; 81(6):755-66. PubMed ID: 20678790 [TBL] [Abstract][Full Text] [Related]
40. Bioavailability of chemical pollutants in contaminated soils and pitfalls of chemical analyses in hazard assessment. Vasseur P; Bonnard M; Palais F; Eom IC; Morel JL Environ Toxicol; 2008 Oct; 23(5):652-6. PubMed ID: 18561306 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]