These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31003415)

  • 1. Two-Dimensional Manipulation in Mid-Air Using a Single Transducer Acoustic Levitator.
    Wijaya H; Latifi K; Zhou Q
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 31003415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix method for acoustic levitation simulation.
    Andrade MA; Perez N; Buiochi F; Adamowski J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Aug; 58(8):1674-83. PubMed ID: 21859587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the particle stability in a new designed ultrasonic levitation device.
    Baer S; Andrade MA; Esen C; Adamowski JC; Schweiger G; Ostendorf A
    Rev Sci Instrum; 2011 Oct; 82(10):105111. PubMed ID: 22047333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic manipulation dynamics of levitated particle with screw-shaped reflecting surface.
    Qin XP; Geng DL; Xie WJ; Wei B
    Rev Sci Instrum; 2022 Jun; 93(6):064506. PubMed ID: 35778049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Acoustic Levitator Based On Subwavelength Aperture Control.
    Lu X; Twiefel J; Ma Z; Yu T; Wallaschek J; Fischer P
    Adv Sci (Weinh); 2021 Aug; 8(15):e2100888. PubMed ID: 34105900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear characterization of a single-axis acoustic levitator.
    Andrade MA; Ramos TS; Okina FT; Adamowski JC
    Rev Sci Instrum; 2014 Apr; 85(4):045125. PubMed ID: 24784677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis and optimization of a single-axis acoustic levitator.
    Andrade MA; Buiochi F; Adamowski JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):469-79. PubMed ID: 20178913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical elemental analysis of single acoustic-levitated water droplets by laser-induced breakdown spectroscopy.
    Contreras V; Valencia R; Peralta J; Sobral H; Meneses-Nava MA; Martinez H
    Opt Lett; 2018 May; 43(10):2260-2263. PubMed ID: 29762567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional noncontact transportation of small objects in air using flexural vibration of a plate.
    Kashima R; Koyama D; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2161-8. PubMed ID: 26670855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncontact Transportation of Planar Object in an Ultrasound Waveguide.
    Masuda K; Koyama D; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2160-2166. PubMed ID: 30418873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillation Dynamics of Multiple Water Droplets Levitated in an Acoustic Field.
    Hasegawa K; Murata M
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36143996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 1: evaporation of water microdroplets assessed using boundary-layer and acoustic levitation theories.
    Schiffter H; Lee G
    J Pharm Sci; 2007 Sep; 96(9):2274-83. PubMed ID: 17582811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic contactless injection, transportation, merging, and ejection of droplets with a multifocal point acoustic levitator.
    Andrade MAB; Camargo TSA; Marzo A
    Rev Sci Instrum; 2018 Dec; 89(12):125105. PubMed ID: 30599572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical analysis of a contactless transportation system for cylindrical objects based on ultrasonic levitation.
    Liu Y; Eser M; Sun X; Sepahvand KK; Marburg S
    J Acoust Soc Am; 2021 Sep; 150(3):1682. PubMed ID: 34598613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic levitation of an object larger than the acoustic wavelength.
    Andrade MAB; Okina FTA; Bernassau AL; Adamowski JC
    J Acoust Soc Am; 2017 Jun; 141(6):4148. PubMed ID: 28618830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the dynamics of a big drop in acoustic levitation.
    Cancino-Jaque E; Meneses-Diaz J; Vargas-Hernández Y; Gaete-Garretón L
    Ultrason Sonochem; 2023 Dec; 101():106705. PubMed ID: 38029567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holding characteristics of planar objects suspended by near-field acoustic levitation.
    Matsuo E; Koike Y; Nakamura K; Ueha S; Hashimoto Y
    Ultrasonics; 2000 Mar; 38(1-8):60-3. PubMed ID: 10829629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferroelectret-based flexible transducers: A strategy for acoustic levitation and manipulation of particles.
    Xue Y; Zhang X; Chadda R; Sessler GM; Kupnik M
    J Acoust Soc Am; 2020 May; 147(5):EL421. PubMed ID: 32486787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of acoustic levitation capabilities on geometric parameters.
    Xie WJ; Wei B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026605. PubMed ID: 12241309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic levitation of axisymmetric Mie objects above a transducer array by engineering the acoustic radiation force and torque.
    Tang T; Silva GT; Huang L; Han X
    Phys Rev E; 2022 Oct; 106(4-2):045108. PubMed ID: 36397496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.