These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 31003456)
1. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study. Can YS; Chalabianloo N; Ekiz D; Ersoy C Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456 [TBL] [Abstract][Full Text] [Related]
2. Stress detection in daily life scenarios using smart phones and wearable sensors: A survey. Can YS; Arnrich B; Ersoy C J Biomed Inform; 2019 Apr; 92():103139. PubMed ID: 30825538 [TBL] [Abstract][Full Text] [Related]
3. A machine-learning approach for stress detection using wearable sensors in free-living environments. Abd Al-Alim M; Mubarak R; M Salem N; Sadek I Comput Biol Med; 2024 Sep; 179():108918. PubMed ID: 39029434 [TBL] [Abstract][Full Text] [Related]
4. Objective stress monitoring based on wearable sensors in everyday settings. Han HJ; Labbaf S; Borelli JL; Dutt N; Rahmani AM J Med Eng Technol; 2020 May; 44(4):177-189. PubMed ID: 32589065 [TBL] [Abstract][Full Text] [Related]
5. From lab to life: Evaluating the reliability and validity of psychophysiological data from wearable devices in laboratory and ambulatory settings. Hu X; Sgherza TR; Nothrup JB; Fresco DM; Naragon-Gainey K; Bylsma LM Behav Res Methods; 2024 Oct; 56(7):1-20. PubMed ID: 38528248 [TBL] [Abstract][Full Text] [Related]
6. An Innovative, Unobtrusive Approach to Investigate Smartphone Interaction in Nonaddicted Subjects Based on Wearable Sensors: A Pilot Study. Tonacci A; Billeci L; Sansone F; Masci A; Pala AP; Domenici C; Conte R Medicina (Kaunas); 2019 Feb; 55(2):. PubMed ID: 30720738 [No Abstract] [Full Text] [Related]
7. Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals: Design and Preliminary Measurements. Volpes G; Valenti S; Genova G; Barà C; Parisi A; Faes L; Busacca A; Pernice R Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667198 [TBL] [Abstract][Full Text] [Related]
8. Wearable Multisensor Ring-Shaped Probe for Assessing Stress and Blood Oxygenation: Design and Preliminary Measurements. Valenti S; Volpes G; Parisi A; Peri D; Lee J; Faes L; Busacca A; Pernice R Biosensors (Basel); 2023 Apr; 13(4):. PubMed ID: 37185535 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of an Integrated System of Wearable Physiological Sensors for Stress Monitoring in Working Environments by Using Biological Markers. Betti S; Lova RM; Rovini E; Acerbi G; Santarelli L; Cabiati M; Del Ry S; Cavallo F IEEE Trans Biomed Eng; 2018 Aug; 65(8):1748-1758. PubMed ID: 29989933 [TBL] [Abstract][Full Text] [Related]
10. Comparative Evaluation of the Autonomic Response to Cognitive and Sensory Stimulations through Wearable Sensors. Tonacci A; Billeci L; Burrai E; Sansone F; Conte R Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31717848 [TBL] [Abstract][Full Text] [Related]
11. One-Channel Wearable Mental Stress State Monitoring System. Abdul Kader L; Al-Shargie F; Tariq U; Al-Nashash H Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205067 [TBL] [Abstract][Full Text] [Related]
12. Electrodermal Activity Based Pre-surgery Stress Detection Using a Wrist Wearable. S AA; P S; V S; S SK; A S; Akl TJ; P PS; Sivaprakasam M IEEE J Biomed Health Inform; 2020 Jan; 24(1):92-100. PubMed ID: 30668508 [TBL] [Abstract][Full Text] [Related]
13. Using Machine Learning to Train a Wearable Device for Measuring Students' Cognitive Load during Problem-Solving Activities Based on Electrodermal Activity, Body Temperature, and Heart Rate: Development of a Cognitive Load Tracker for Both Personal and Classroom Use. Romine WL; Schroeder NL; Graft J; Yang F; Sadeghi R; Zabihimayvan M; Kadariya D; Banerjee T Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867055 [TBL] [Abstract][Full Text] [Related]
14. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions. Menghini L; Gianfranchi E; Cellini N; Patron E; Tagliabue M; Sarlo M Psychophysiology; 2019 Nov; 56(11):e13441. PubMed ID: 31332802 [TBL] [Abstract][Full Text] [Related]
16. Toward Dynamically Adaptive Simulation: Multimodal Classification of User Expertise Using Wearable Devices. Ross K; Sarkar P; Rodenburg D; Ruberto A; Hungler P; Szulewski A; Howes D; Etemad A Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31581563 [TBL] [Abstract][Full Text] [Related]
17. Machine learning-enabled detection of attention-deficit/hyperactivity disorder with multimodal physiological data: a case-control study. Andrikopoulos D; Vassiliou G; Fatouros P; Tsirmpas C; Pehlivanidis A; Papageorgiou C BMC Psychiatry; 2024 Aug; 24(1):547. PubMed ID: 39103819 [TBL] [Abstract][Full Text] [Related]
18. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M Int J Med Inform; 2023 May; 173():105026. PubMed ID: 36893657 [TBL] [Abstract][Full Text] [Related]
19. Annotation and prediction of stress and workload from physiological and inertial signals. Ghosh A; Danieli M; Riccardi G Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1621-4. PubMed ID: 26736585 [TBL] [Abstract][Full Text] [Related]
20. Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models. Beltrame T; Amelard R; Wong A; Hughson RL J Appl Physiol (1985); 2018 Feb; 124(2):473-481. PubMed ID: 28596271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]