BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 31003524)

  • 1. Evaluation of Hand Action Classification Performance Using Machine Learning Based on Signals from Two sEMG Electrodes.
    Shaw HO; Devin KM; Tang J; Jiang L
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EMG gesture signal analysis towards diagnosis of upper limb using dual-pathway convolutional neural network.
    Qamar HGM; Qureshi MF; Mushtaq Z; Zubariah Z; Rehman MZU; Samee NA; Mahmoud NF; Gu YH; Al-Masni MA
    Math Biosci Eng; 2024 Apr; 21(4):5712-5734. PubMed ID: 38872555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning for Electromyographic Lower-Limb Motion Signal Classification Using Residual Learning.
    Sun J; Wang Y; Hou J; Li G; Sun B; Lu P
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2078-2086. PubMed ID: 38771681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limb-position robust classification of myoelectric signals for prosthesis control using sparse representations.
    Betthauser JL; Hunt CL; Osborn LE; Kaliki RR; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6373-6376. PubMed ID: 28325032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Improved Extreme Learning Machine (ELM) Algorithm for Intent Recognition of Transfemoral Amputees With Powered Knee Prosthesis.
    Zhang Y; Wang X; Xiu H; Chen W; Ma Y; Wei G; Ren L; Ren L
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1757-1766. PubMed ID: 38683719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning for Enhanced Prosthetic Control: Real-Time Motor Intent Decoding for Simultaneous Control of Artificial Limbs.
    Zbinden J; Molin J; Ortiz-Catalan M
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1177-1186. PubMed ID: 38421839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pain Intensity Recognition Rates via Biopotential Feature Patterns with Support Vector Machines.
    Gruss S; Treister R; Werner P; Traue HC; Crawcour S; Andrade A; Walter S
    PLoS One; 2015; 10(10):e0140330. PubMed ID: 26474183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue Evaluation through Machine Learning and a Global Fatigue Descriptor.
    Ramos G; Vaz JR; Mendonça GV; Pezarat-Correia P; Rodrigues J; Alfaras M; Gamboa H
    J Healthc Eng; 2020; 2020():6484129. PubMed ID: 31998469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Load Recognition in Home Energy Management Systems Based on Neighborhood Components Analysis and Regularized Extreme Learning Machine.
    Cabral TW; Neto FB; de Lima ER; Fraidenraich G; Meloni LGP
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A data set for the design and implementation of the upper limb disability registry.
    Moulaei K; Sheikhtaheri A; Haghdoost AA; Nezhadd MS; Bahaadinbeigy K
    J Educ Health Promot; 2023; 12():130. PubMed ID: 37397108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing the Energy Consumption of sEMG-Based Gesture Recognition at the Edge Using Transformers and Dynamic Inference.
    Xie C; Burrello A; Daghero F; Benini L; Calimera A; Macii E; Poncino M; Jahier Pagliari D
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Multi-Stream Convolutional Block Attention Module for sEMG-Based Gesture Recognition.
    Wang S; Huang L; Jiang D; Sun Y; Jiang G; Li J; Zou C; Fan H; Xie Y; Xiong H; Chen B
    Front Bioeng Biotechnol; 2022; 10():909023. PubMed ID: 35747495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Gesture Recognition Using Surface EMG Signals Based on Multi-Stream Residual Network.
    Yang Z; Jiang D; Sun Y; Tao B; Tong X; Jiang G; Xu M; Yun J; Liu Y; Chen B; Kong J
    Front Bioeng Biotechnol; 2021; 9():779353. PubMed ID: 34746114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collaborative Analysis on the Marked Ages of Rice Wines by Electronic Tongue and Nose based on Different Feature Data Sets.
    Zhang H; Shao W; Qiu S; Wang J; Wei Z
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. putEMG-A Surface Electromyography Hand Gesture Recognition Dataset.
    Kaczmarek P; Mańkowski T; Tomczyński J
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31416251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Open Database for Accurate Upper-Limb Intent Detection Using Electromyography and Reliable Extreme Learning Machines.
    Cene VH; Tosin M; Machado J; Balbinot A
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resilient EMG Classification to Enable Reliable Upper-Limb Movement Intent Detection.
    Cene VH; Balbinot A
    IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2507-2514. PubMed ID: 32956063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smoothed arg max Extreme Learning Machine: An Alternative to Avoid Classification Ripple in sEMG Signals.
    Cene VH; Machado J; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6603-6606. PubMed ID: 31947355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Antonyan Vardan Transform and Extreme Learning Machines for Accurate sEMG Signal Classification.
    Cene VH; Santos RRD; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5224-5227. PubMed ID: 30441516
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.