These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 31003609)

  • 1. Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding.
    van Eeuwijk FA; Bustos-Korts D; Millet EJ; Boer MP; Kruijer W; Thompson A; Malosetti M; Iwata H; Quiroz R; Kuppe C; Muller O; Blazakis KN; Yu K; Tardieu F; Chapman SC
    Plant Sci; 2019 May; 282():23-39. PubMed ID: 31003609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data.
    Tsai HY; Cericola F; Edriss V; Andersen JR; Orabi J; Jensen JD; Jahoor A; Janss L; Jensen J
    PLoS One; 2020; 15(5):e0232665. PubMed ID: 32401769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials.
    Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM
    Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root phenotyping: from component trait in the lab to breeding.
    Kuijken RC; van Eeuwijk FA; Marcelis LF; Bouwmeester HJ
    J Exp Bot; 2015 Sep; 66(18):5389-401. PubMed ID: 26071534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap.
    Großkinsky DK; Svensgaard J; Christensen S; Roitsch T
    J Exp Bot; 2015 Sep; 66(18):5429-40. PubMed ID: 26163702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic Prediction Accounting for Genotype by Environment Interaction Offers an Effective Framework for Breeding Simultaneously for Adaptation to an Abiotic Stress and Performance Under Normal Cropping Conditions in Rice.
    Ben Hassen M; Bartholomé J; Valè G; Cao TV; Ahmadi N
    G3 (Bethesda); 2018 Jul; 8(7):2319-2332. PubMed ID: 29743189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G2P Provides an Integrative Environment for Multi-model genomic selection analysis to improve genotype-to-phenotype prediction.
    Wang Q; Jiang S; Li T; Qiu Z; Yan J; Fu R; Ma C; Wang X; Jiang S; Cheng Q
    Front Plant Sci; 2023; 14():1207139. PubMed ID: 37600179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates.
    Onogi A; Watanabe M; Mochizuki T; Hayashi T; Nakagawa H; Hasegawa T; Iwata H
    Theor Appl Genet; 2016 Apr; 129(4):805-817. PubMed ID: 26791836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enviromic-based kernels may optimize resource allocation with multi-trait multi-environment genomic prediction for tropical Maize.
    Gevartosky R; Carvalho HF; Costa-Neto G; Montesinos-López OA; Crossa J; Fritsche-Neto R
    BMC Plant Biol; 2023 Jan; 23(1):10. PubMed ID: 36604618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resource allocation optimization with multi-trait genomic prediction for bread wheat (Triticum aestivum L.) baking quality.
    Lado B; Vázquez D; Quincke M; Silva P; Aguilar I; Gutiérrez L
    Theor Appl Genet; 2018 Dec; 131(12):2719-2731. PubMed ID: 30232499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat.
    Ovenden B; Milgate A; Wade LJ; Rebetzke GJ; Holland JB
    G3 (Bethesda); 2018 May; 8(6):1909-1919. PubMed ID: 29661842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspectives on Applications of Hierarchical Gene-To-Phenotype (G2P) Maps to Capture Non-stationary Effects of Alleles in Genomic Prediction.
    Powell OM; Voss-Fels KP; Jordan DR; Hammer G; Cooper M
    Front Plant Sci; 2021; 12():663565. PubMed ID: 34149761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.
    Cuevas J; Crossa J; Montesinos-López OA; Burgueño J; Pérez-Rodríguez P; de Los Campos G
    G3 (Bethesda); 2017 Jan; 7(1):41-53. PubMed ID: 27793970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data.
    Tong H; Nikoloski Z
    J Plant Physiol; 2021 Feb; 257():153354. PubMed ID: 33385619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments.
    Howard R; Gianola D; Montesinos-López O; Juliana P; Singh R; Poland J; Shrestha S; Pérez-Rodríguez P; Crossa J; Jarquín D
    G3 (Bethesda); 2019 Sep; 9(9):2925-2934. PubMed ID: 31300481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reaction norm model for genomic selection using high-dimensional genomic and environmental data.
    Jarquín D; Crossa J; Lacaze X; Du Cheyron P; Daucourt J; Lorgeou J; Piraux F; Guerreiro L; Pérez P; Calus M; Burgueño J; de los Campos G
    Theor Appl Genet; 2014 Mar; 127(3):595-607. PubMed ID: 24337101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotized indoor phenotyping allows genomic prediction of adaptive traits in the field.
    Bouidghaghen J; Moreau L; Beauchêne K; Chapuis R; Mangel N; Cabrera-Bosquet L; Welcker C; Bogard M; Tardieu F
    Nat Commun; 2023 Oct; 14(1):6603. PubMed ID: 37857601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early prediction of biomass in hybrid rye based on hyperspectral data surpasses genomic predictability in less-related breeding material.
    Galán RJ; Bernal-Vasquez AM; Jebsen C; Piepho HP; Thorwarth P; Steffan P; Gordillo A; Miedaner T
    Theor Appl Genet; 2021 May; 134(5):1409-1422. PubMed ID: 33630103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MegaLMM: Mega-scale linear mixed models for genomic predictions with thousands of traits.
    Runcie DE; Qu J; Cheng H; Crawford L
    Genome Biol; 2021 Jul; 22(1):213. PubMed ID: 34301310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using machine learning to combine genetic and environmental data for maize grain yield predictions across multi-environment trials.
    Fernandes IK; Vieira CC; Dias KOG; Fernandes SB
    Theor Appl Genet; 2024 Jul; 137(8):189. PubMed ID: 39044035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.