These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31004138)

  • 1. Evaluating Plastic Deformation and Damage as Potential Mechanisms for Tendon Inelasticity Using a Reactive Modeling Framework.
    Safa BN; Lee AH; Santare MH; Elliott DM
    J Biomech Eng; 2019 Oct; 141(10):1010081-10100810. PubMed ID: 31004138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Reactive Inelasticity Theoretical Framework for Modeling Viscoelasticity, Plastic Deformation, and Damage in Fibrous Soft Tissue.
    Safa BN; Santare MH; Elliott DM
    J Biomech Eng; 2019 Feb; 141(2):0210051-02100512. PubMed ID: 30267056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue.
    Maher E; Creane A; Lally C; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Aug; 12():9-19. PubMed ID: 22659364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone.
    Gupta HS; Krauss S; Kerschnitzki M; Karunaratne A; Dunlop JW; Barber AH; Boesecke P; Funari SS; Fratzl P
    J Mech Behav Biomed Mater; 2013 Dec; 28():366-82. PubMed ID: 23707600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Scale Loading and Damage Mechanisms of Plantaris and Rat Tail Tendons.
    Lee AH; Elliott DM
    J Orthop Res; 2019 Aug; 37(8):1827-1837. PubMed ID: 30977538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site specific inelasticity of arterial tissue.
    Maher E; Early M; Creane A; Lally C; Kelly DJ
    J Biomech; 2012 May; 45(8):1393-9. PubMed ID: 22445610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating plasticity of the interfibrillar matrix in shear lag models is necessary to replicate the multiscale mechanics of tendon fascicles.
    Szczesny SE; Elliott DM
    J Mech Behav Biomed Mater; 2014 Dec; 40():325-338. PubMed ID: 25262202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of mechanical behavior of a porcine pulmonary artery strip using a randomized uniaxial stretch and stretch-rate protocol.
    Jhun CS; Criscione JC
    Biomed Eng Online; 2008 Jan; 7():4. PubMed ID: 18211719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular-level collagen damage explains softening and failure of arterial tissues: A quantitative interpretation of CHP data with a novel elasto-damage model.
    Marino M; Converse MI; Monson KL; Wriggers P
    J Mech Behav Biomed Mater; 2019 Sep; 97():254-271. PubMed ID: 31132662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inelasticity of human carotid atherosclerotic plaque.
    Maher E; Creane A; Sultan S; Hynes N; Lally C; Kelly DJ
    Ann Biomed Eng; 2011 Sep; 39(9):2445-55. PubMed ID: 21618044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inelastic Behavior of Polyoxymethylene for Wide Strain Rate and Temperature Ranges: Constitutive Modeling and Identification.
    Filanova Y; Hauptmann J; Längler F; Naumenko K
    Materials (Basel); 2021 Jul; 14(13):. PubMed ID: 34279248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freezing does not alter multiscale tendon mechanics and damage mechanisms in tension.
    Lee AH; Elliott DM
    Ann N Y Acad Sci; 2017 Dec; 1409(1):85-94. PubMed ID: 29068534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of transverse poroelastic mechanics of tendon using osmotic loading and biphasic mixture finite element modeling.
    Safa BN; Bloom ET; Lee AH; Santare MH; Elliott DM
    J Biomech; 2020 Aug; 109():109892. PubMed ID: 32807341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour.
    Peña E; Alastrué V; Laborda A; Martínez MA; Doblaré M
    J Biomech; 2010 Mar; 43(5):984-9. PubMed ID: 19959171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of testing temperature on the nanostructural response of tendon to tensile mechanical overload.
    KarisAllen JJ; Veres SP
    J Biomech; 2020 May; 104():109720. PubMed ID: 32156441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of overuse tendinopathy: A new descriptive model for the initiation of tendon damage during cyclic loading.
    Herod TW; Veres SP
    J Orthop Res; 2018 Jan; 36(1):467-476. PubMed ID: 28598009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biaxial tensile testing and constitutive modeling of human supraspinatus tendon.
    Szczesny SE; Peloquin JM; Cortes DH; Kadlowec JA; Soslowsky LJ; Elliott DM
    J Biomech Eng; 2012 Feb; 134(2):021004. PubMed ID: 22482671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Stimulation
    Peterson BE; Rolfe RA; Kunselman A; Murphy P; Szczesny SE
    Front Cell Dev Biol; 2021; 9():725563. PubMed ID: 34540841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of Internal Stress-Strain Fields in Human Tendon: Unraveling the Mechanisms that Underlie Regional Tendon Adaptations and Mal-Adaptations to Mechanical Loading and the Effectiveness of Therapeutic Eccentric Exercise.
    Maganaris CN; Chatzistergos P; Reeves ND; Narici MV
    Front Physiol; 2017; 8():91. PubMed ID: 28293194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.