These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31004189)

  • 1. Modeling of spike trains in auditory nerves with self-exciting point processes of the von Mises type.
    Mino H
    Biol Cybern; 2019 Jun; 113(3):347-356. PubMed ID: 31004189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the rates of pseudo-spontaneous spikes generated by electric stimuli on information transmission in an auditory nerve fiber model.
    Kumsa P; Mino H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5246-9. PubMed ID: 24110919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encoding of information into neural spike trains in an auditory nerve fiber model with electric stimuli in the presence of a pseudospontaneous activity.
    Mino H
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):360-9. PubMed ID: 17355047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronization index of neural spike trains in response to simulated vowel signal stimuli in the presence of a pseudo-spontaneous activity.
    Wada Y; Mino H
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4159-62. PubMed ID: 17946606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times.
    Peterson AJ; Heil P
    Hear Res; 2018 Jun; 363():1-27. PubMed ID: 28987786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Information Rate of Neural Spike Trains in Response to Sinusoidal Electric Stimuli in the Presence of a Pseudo-spontaneous Activity.
    Mino H
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2006():417-20. PubMed ID: 17282203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses.
    Woo J; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2009 May; 56(5):1348-59. PubMed ID: 19473930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains.
    Miller CA; Hu N; Zhang F; Robinson BK; Abbas PJ
    J Assoc Res Otolaryngol; 2008 Mar; 9(1):122-37. PubMed ID: 18204987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in auditory nerve responses across the duration of sinusoidally amplitude-modulated electric pulse-train stimuli.
    Hu N; Miller CA; Abbas PJ; Robinson BK; Woo J
    J Assoc Res Otolaryngol; 2010 Dec; 11(4):641-56. PubMed ID: 20632064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains.
    Zhang F; Miller CA; Robinson BK; Abbas PJ; Hu N
    J Assoc Res Otolaryngol; 2007 Sep; 8(3):356-72. PubMed ID: 17562109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Information rate of neural spike trains in response to electric stimuli.
    Mino H
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4603-6. PubMed ID: 17271332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A point process framework for modeling electrical stimulation of the auditory nerve.
    Goldwyn JH; Rubinstein JT; Shea-Brown E
    J Neurophysiol; 2012 Sep; 108(5):1430-52. PubMed ID: 22673331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of rates of spontaneous synaptic vesicle secretions in inner hair cells on information transmission in an auditory nerve fiber model.
    Kumsa P; Mino H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2993-6. PubMed ID: 23366554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical excitation of the acoustically sensitive auditory nerve: single-fiber responses to electric pulse trains.
    Miller CA; Abbas PJ; Robinson BK; Nourski KV; Zhang F; Jeng FC
    J Assoc Res Otolaryngol; 2006 Sep; 7(3):195-210. PubMed ID: 16708257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algorithms for removing recovery-related distortion from auditory-nerve discharge patterns.
    Miller MI
    J Acoust Soc Am; 1985 Apr; 77(4):1452-64. PubMed ID: 2985672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spike-Conducting Integrate-and-Fire Model.
    Ashida G; Nogueira W
    eNeuro; 2018; 5(4):. PubMed ID: 30225348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical stimulation of the auditory nerve. III. Response initiation sites and temporal fine structure.
    Javel E; Shepherd RK
    Hear Res; 2000 Feb; 140(1-2):45-76. PubMed ID: 10675635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers.
    Peterson AJ; Irvine DR; Heil P
    J Neurosci; 2014 Nov; 34(45):15097-109. PubMed ID: 25378173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Model of Electrically Stimulated Auditory Nerve Fiber Responses with Peripheral and Central Sites of Spike Generation.
    Joshi SN; Dau T; Epp B
    J Assoc Res Otolaryngol; 2017 Apr; 18(2):323-342. PubMed ID: 28054149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of frequency discrimination with optimal processing of auditory nerve spike intervals.
    Hanekom JJ; Krüger JJ
    Hear Res; 2001 Jan; 151(1-2):188-204. PubMed ID: 11124465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.