These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 31004411)
1. The effect of the speed and range of motion of movement on the hyperemic response to passive leg movement. Gifford JR; Bloomfield T; Davis T; Addington A; McMullin E; Wallace T; Proffit M; Hanson B Physiol Rep; 2019 Apr; 7(8):e14064. PubMed ID: 31004411 [TBL] [Abstract][Full Text] [Related]
2. The role of the endothelium in the hyperemic response to passive leg movement: looking beyond nitric oxide. Trinity JD; Kwon OS; Broxterman RM; Gifford JR; Kithas AC; Hydren JR; Jarrett CL; Shields KL; Bisconti AV; Park SH; Craig JC; Nelson AD; Morgan DE; Jessop JE; Bledsoe AD; Richardson RS Am J Physiol Heart Circ Physiol; 2021 Feb; 320(2):H668-H678. PubMed ID: 33306447 [TBL] [Abstract][Full Text] [Related]
3. Delineating the age-related attenuation of vascular function: Evidence supporting the efficacy of the single passive leg movement as a screening tool. Hydren JR; Broxterman RM; Trinity JD; Gifford JR; Kwon OS; Kithas AC; Richardson RS J Appl Physiol (1985); 2019 Jun; 126(6):1525-1532. PubMed ID: 30946637 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic insights into the modulatory role of the mechanoreflex on central hemodynamics using passive leg movement in humans. Kruse NT; Hughes WE; Casey DP J Appl Physiol (1985); 2018 Aug; 125(2):545-552. PubMed ID: 29771607 [TBL] [Abstract][Full Text] [Related]
5. Single passive leg movement-induced hyperemia: a simple vascular function assessment without a chronotropic response. Venturelli M; Layec G; Trinity J; Hart CR; Broxterman RM; Richardson RS J Appl Physiol (1985); 2017 Jan; 122(1):28-37. PubMed ID: 27834672 [TBL] [Abstract][Full Text] [Related]
6. Reliability of the passive leg movement assessment of vascular function in men. Groot HJ; Broxterman RM; Gifford JR; Garten RS; Rossman MJ; Jarrett CL; Kwon OS; Hydren JR; Richardson RS Exp Physiol; 2022 May; 107(5):541-552. PubMed ID: 35294784 [TBL] [Abstract][Full Text] [Related]
7. Nitric oxide-mediated vascular function in sepsis using passive leg movement as a novel assessment: a cross-sectional study. Nelson AD; Rossman MJ; Witman MA; Barrett-O'Keefe Z; Groot HJ; Garten RS; Richardson RS J Appl Physiol (1985); 2016 May; 120(9):991-9. PubMed ID: 26869709 [TBL] [Abstract][Full Text] [Related]
8. The role of nitric oxide in passive leg movement-induced vasodilatation with age: insight from alterations in femoral perfusion pressure. Groot HJ; Trinity JD; Layec G; Rossman MJ; Ives SJ; Morgan DE; Bledsoe A; Richardson RS J Physiol; 2015 Sep; 593(17):3917-28. PubMed ID: 26108562 [TBL] [Abstract][Full Text] [Related]
9. Vascular function is related to blood flow during high-intensity, but not low-intensity, knee extension exercise. Hanson BE; Proffit M; Gifford JR J Appl Physiol (1985); 2020 Mar; 128(3):698-708. PubMed ID: 31917628 [TBL] [Abstract][Full Text] [Related]
10. The passive leg movement technique for assessing vascular function: defining the distribution of blood flow and the impact of occluding the lower leg. Shields KL; Broxterman RM; Jarrett CL; Bisconti AV; Park SH; Richardson RS Exp Physiol; 2019 Oct; 104(10):1575-1584. PubMed ID: 31400019 [TBL] [Abstract][Full Text] [Related]
11. Perfusion pressure and movement-induced hyperemia: evidence of limited vascular function and vasodilatory reserve with age. Groot HJ; Trinity JD; Layec G; Rossman MJ; Ives SJ; Richardson RS Am J Physiol Heart Circ Physiol; 2013 Feb; 304(4):H610-9. PubMed ID: 23262136 [TBL] [Abstract][Full Text] [Related]
12. The passive leg movement technique for assessing vascular function: the impact of baseline blood flow. Shields KL; Broxterman RM; Jarrett CL; Bisconti AV; Park SH; Richardson RS Exp Physiol; 2021 Oct; 106(10):2133-2147. PubMed ID: 34411365 [TBL] [Abstract][Full Text] [Related]
13. Single passive leg movement assessment of vascular function: contribution of nitric oxide. Broxterman RM; Trinity JD; Gifford JR; Kwon OS; Kithas AC; Hydren JR; Nelson AD; Morgan DE; Jessop JE; Bledsoe AD; Richardson RS J Appl Physiol (1985); 2017 Dec; 123(6):1468-1476. PubMed ID: 28860173 [TBL] [Abstract][Full Text] [Related]
14. Reliability of the hyperaemic response to passive leg movement in young, healthy women. Lew LA; Liu KR; Pyke KE Exp Physiol; 2021 Sep; 106(9):2013-2023. PubMed ID: 34216162 [TBL] [Abstract][Full Text] [Related]
15. Effects of a pre-workout supplement on hyperemia following leg extension resistance exercise to failure with different resistance loads. Martin JS; Mumford PW; Haun CT; Luera MJ; Muddle TWD; Colquhoun RJ; Feeney MP; Mackey CS; Roberson PA; Young KC; Pascoe DD; DeFreitas JM; Jenkins NDM; Roberts MD J Int Soc Sports Nutr; 2017; 14():38. PubMed ID: 28959158 [TBL] [Abstract][Full Text] [Related]
16. Vascular function assessed by passive leg movement and flow-mediated dilation: initial evidence of construct validity. Rossman MJ; Groot HJ; Garten RS; Witman MA; Richardson RS Am J Physiol Heart Circ Physiol; 2016 Nov; 311(5):H1277-H1286. PubMed ID: 27638879 [TBL] [Abstract][Full Text] [Related]
17. Altered vascular function in chronic kidney disease: evidence from passive leg movement. Katulka EK; Hirt AE; Kirkman DL; Edwards DG; Witman MAH Physiol Rep; 2019 Apr; 7(8):e14075. PubMed ID: 31016878 [TBL] [Abstract][Full Text] [Related]
18. The cardiovascular response to passive movement is joint dependent. Burns KJ; Pollock BS; McDaniel J Physiol Rep; 2016 Mar; 4(5):. PubMed ID: 26997626 [TBL] [Abstract][Full Text] [Related]
19. Central and peripheral contributors to skeletal muscle hyperemia: response to passive limb movement. McDaniel J; Fjeldstad AS; Ives S; Hayman M; Kithas P; Richardson RS J Appl Physiol (1985); 2010 Jan; 108(1):76-84. PubMed ID: 19910331 [TBL] [Abstract][Full Text] [Related]