These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31004529)

  • 1. A Methodology for Global Sensitivity Analysis of Activated Sludge Models: Case Study with Activated Sludge Model No. 3 (ASM3).
    Fortela DLB; Farmer K; Zappi A; Sharp WW; Revellame E; Gang D; Zappi M
    Water Environ Res; 2019 Sep; 91(9):865-876. PubMed ID: 31004529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter sensitivity analysis for activated sludge models No. 1 and 3 combined with one-dimensional settling model.
    Kim JR; Ko JH; Lee JJ; Kim SH; Park TJ; Kim CW; Woo HJ
    Water Sci Technol; 2006; 53(1):129-38. PubMed ID: 16532743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of stoichiometric and kinetic coefficients of ASM3 under aerobic and anoxic conditions via respirometry.
    Avcioğlu E; Karahan-Gül O; Orhon D
    Water Sci Technol; 2003; 48(8):185-94. PubMed ID: 14682586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of mechanistically based model for simulating soluble microbial products generation in an aerated/non-aerated SBR.
    Fan J; Ding Y; Qiu Z; Li W; Lu S
    Bioprocess Biosyst Eng; 2011 Nov; 34(9):1151-61. PubMed ID: 21750920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring functional data analysis and wavelet principal component analysis on ecstasy (MDMA) wastewater data.
    Salvatore S; Bramness JG; Røislien J
    BMC Med Res Methodol; 2016 Jul; 16():81. PubMed ID: 27406032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying a Global Sensitivity Analysis Workflow to Improve the Computational Efficiencies in Physiologically-Based Pharmacokinetic Modeling.
    Hsieh NH; Reisfeld B; Bois FY; Chiu WA
    Front Pharmacol; 2018; 9():588. PubMed ID: 29937730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling wastewater transformation in sewers based on ASM3.
    Huisman JL; Gujer W
    Water Sci Technol; 2002; 45(6):51-60. PubMed ID: 11989878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity analyses and simulations of a full-scale experimental membrane bioreactor system using the activated sludge model No. 3 (ASM3).
    Ruiz LM; Rodelas P; Pérez JI; Gómez MA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(3):317-24. PubMed ID: 25594125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-based selection of the robust JAK-STAT activation mechanism.
    Rybiński M; Gambin A
    J Theor Biol; 2012 Sep; 309():34-46. PubMed ID: 22677400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new statistical framework for parameter subset selection and optimal parameter estimation in the activated sludge model.
    Kim YS; Kim MH; Yoo CK
    J Hazard Mater; 2010 Nov; 183(1-3):441-7. PubMed ID: 20702037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibration and validation of an ASM3-based steady-state model for activated sludge systems--part I: Prediction of nitrogen removal and sludge production.
    Koch G; Kühni M; Siegrist H
    Water Res; 2001 Jun; 35(9):2235-45. PubMed ID: 11358303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling carbon oxidation in pulp mill activated sludge systems: calibration of Activated Sludge Model No 3.
    Barañao PA; Hall ER
    Water Sci Technol; 2004; 50(3):1-10. PubMed ID: 15461393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate storage concepts in modeling activated sludge systems for tannery wastewaters.
    Dizdaroglu-Risvanoglu G; Karahan O; Cokgor EU; Orhon D; Van Loosdrecht MC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Dec; 42(14):2159-66. PubMed ID: 18074288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The EAWAG Bio-P module for activated sludge model No. 3.
    Siegrist H; Rieger L; Koch G; Kühni M; Gujer W
    Water Sci Technol; 2002; 45(6):61-76. PubMed ID: 11989879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric functional principal component analysis.
    Sang P; Wang L; Cao J
    Biometrics; 2017 Sep; 73(3):802-810. PubMed ID: 28295173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment on activated sludge models for acetate biodegradation under aerobic conditions.
    Hoque MA; Aravinthan V; Pradhan NM
    Water Sci Technol; 2009; 60(4):983-94. PubMed ID: 19700837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.
    Ramin E; Sin G; Mikkelsen PS; Plósz BG
    Water Res; 2014 Oct; 63():209-21. PubMed ID: 25003213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of ASM3 for the determination of biomass adsorption/storage capacity in bulking sludge control.
    Makinia J; Rosenwinkel KH; Phan LC
    Water Sci Technol; 2006; 53(3):91-9. PubMed ID: 16605021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cyberGIS approach to spatiotemporally explicit uncertainty and global sensitivity analysis for agent-based modeling of vector-borne disease transmission.
    Kang JY; Aldstadt J; Vandewalle R; Yin D; Wang S
    Ann Am Assoc Geogr; 2020; 110(6):1855-1873. PubMed ID: 35106407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of microorganisms with PHA production capability in activated sludge and its implication in activated sludge model no. 3.
    Hanada S; Satoh H; Mino T
    Water Sci Technol; 2002; 45(6):107-13. PubMed ID: 11989863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.