These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31004612)

  • 1. Modeling the effect of tat inhibitors on HIV latency.
    Aguilera LU; Rodríguez-González J
    J Theor Biol; 2019 Jul; 473():20-27. PubMed ID: 31004612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Tat Inhibitor Didehydro-Cortistatin A Prevents HIV-1 Reactivation from Latency.
    Mousseau G; Kessing CF; Fromentin R; Trautmann L; Chomont N; Valente ST
    mBio; 2015 Jul; 6(4):e00465. PubMed ID: 26152583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit.
    Karn J
    Curr Opin HIV AIDS; 2011 Jan; 6(1):4-11. PubMed ID: 21242887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probabilistic control of HIV latency and transactivation by the Tat gene circuit.
    Cao Y; Lei X; Ribeiro RM; Perelson AS; Liang J
    Proc Natl Acad Sci U S A; 2018 Dec; 115(49):12453-12458. PubMed ID: 30455316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HIV latency reversing agents act through Tat post translational modifications.
    Khoury G; Mota TM; Li S; Tumpach C; Lee MY; Jacobson J; Harty L; Anderson JL; Lewin SR; Purcell DFJ
    Retrovirology; 2018 May; 15(1):36. PubMed ID: 29751762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure.
    Mbonye U; Karn J
    Virology; 2014 Apr; 454-455():328-39. PubMed ID: 24565118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Didehydro-Cortistatin A: a new player in HIV-therapy?
    Mousseau G; Valente ST
    Expert Rev Anti Infect Ther; 2016; 14(2):145-8. PubMed ID: 26581953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splicing Factor 3B Subunit 1 Interacts with HIV Tat and Plays a Role in Viral Transcription and Reactivation from Latency.
    Kyei GB; Meng S; Ramani R; Niu A; Lagisetti C; Webb TR; Ratner L
    mBio; 2018 Nov; 9(6):. PubMed ID: 30401776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the architecture of the HIV-1 Tat circuit: A decision-making circuit that lacks bistability and exploits stochastic noise.
    Razooky BS; Weinberger LS
    Methods; 2011 Jan; 53(1):68-77. PubMed ID: 21167940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular transactivation of HIV can account for the decelerating decay of virus load during drug therapy.
    Althaus CL; De Boer RJ
    Mol Syst Biol; 2010; 6():348. PubMed ID: 20160709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The viral protein Tat can inhibit the establishment of HIV-1 latency.
    Donahue DA; Kuhl BD; Sloan RD; Wainberg MA
    J Virol; 2012 Mar; 86(6):3253-63. PubMed ID: 22238306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The HIV-1 Tat Protein: Mechanism of Action and Target for HIV-1 Cure Strategies.
    Rice AP
    Curr Pharm Des; 2017; 23(28):4098-4102. PubMed ID: 28677507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of HIV-1 Tat-Associated Proteins Contributing to HIV-1 Transcription and Latency.
    Jean MJ; Power D; Kong W; Huang H; Santoso N; Zhu J
    Viruses; 2017 Apr; 9(4):. PubMed ID: 28368303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shutdown of HIV-1 Transcription in T Cells by Nullbasic, a Mutant Tat Protein.
    Jin H; Li D; Sivakumaran H; Lor M; Rustanti L; Cloonan N; Wani S; Harrich D
    mBio; 2016 Jul; 7(4):. PubMed ID: 27381288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical model of the Tat-Rev regulation of HIV-1 replication in an activated cell predicts the existence of oscillatory dynamics in the synthesis of viral components.
    Likhoshvai VA; Khlebodarova TM; Bazhan SI; Gainova IA; Chereshnev VA; Bocharov GA
    BMC Genomics; 2014; 15 Suppl 12(Suppl 12):S1. PubMed ID: 25564443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of HIV latency by epigenetic and non-epigenetic mechanisms.
    Mbonye U; Karn J
    Curr HIV Res; 2011 Dec; 9(8):554-67. PubMed ID: 22211660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Natural Product from Polygonum cuspidatum Sieb. Et Zucc. Promotes Tat-Dependent HIV Latency Reversal through Triggering P-TEFb's Release from 7SK snRNP.
    Wang C; Yang S; Lu H; You H; Ni M; Shan W; Lin T; Gao X; Chen H; Zhou Q; Xue Y
    PLoS One; 2015; 10(11):e0142739. PubMed ID: 26569506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chalcone derivative reactivates latent HIV-1 transcription through activating P-TEFb and promoting Tat-SEC interaction on viral promoter.
    Wu J; Ao MT; Shao R; Wang HR; Yu D; Fang MJ; Gao X; Wu Z; Zhou Q; Xue YH
    Sci Rep; 2017 Sep; 7(1):10657. PubMed ID: 28878233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance to the Tat Inhibitor Didehydro-Cortistatin A Is Mediated by Heightened Basal HIV-1 Transcription.
    Mousseau G; Aneja R; Clementz MA; Mediouni S; Lima NS; Haregot A; Kessing CF; Jablonski JA; Thenin-Houssier S; Nagarsheth N; Trautmann L; Valente ST
    mBio; 2019 Jul; 10(4):. PubMed ID: 31266880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hardwired HIV latency program.
    Razooky BS; Pai A; Aull K; Rouzine IM; Weinberger LS
    Cell; 2015 Feb; 160(5):990-1001. PubMed ID: 25723172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.