These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31004688)

  • 1. Osteopontin-derived synthetic peptide SVVYGLR has potent utility in the functional regeneration of oral and maxillofacial skeletal muscles.
    Tanaka S; Matsushita Y; Hamada Y; Kawaguchi N; Usuki T; Yokoyama Y; Tsuji T; Yamamoto H; Kogo M
    Peptides; 2019 Jun; 116():8-15. PubMed ID: 31004688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteopontin-derived synthetic peptide SVVYGLR upregulates functional regeneration of oral and maxillofacial soft-tissue injury.
    Tanaka S; Hamada Y; Yokoyama Y; Yamamoto H; Kogo M
    Jpn Dent Sci Rev; 2021 Nov; 57():174-181. PubMed ID: 34630775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of cardiac function after implanting the osteopontin-derived peptide SVVYGLR in a hamster model of dilated cardiomyopathy.
    Mizuno Y; Uchinaka A; Horii Y; Mori S; Hamada Y; Miyagawa S; Saito A; Sawa Y; Matsuura N; Kawaguchi N
    Interact Cardiovasc Thorac Surg; 2015 Oct; 21(4):506-14. PubMed ID: 26188018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synthetic peptide SVVYGLR promotes cell motility of myogenic cells and facilitates differentiation in skeletal muscle regeneration.
    Tanaka S; Fujishita Y; Kawaguchi N; Usuki T; Yokoyama Y; Wu X; Mori S; Yamamoto H; Kogo M
    Dent Mater J; 2021 May; 40(3):766-771. PubMed ID: 33563848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic peptide SVVYGLR upregulates cell motility and facilitates oral mucosal wound healing.
    Tanaka S; Yasuda T; Hamada Y; Kawaguchi N; Fujishita Y; Mori S; Yokoyama Y; Yamamoto H; Kogo M
    Peptides; 2020 Dec; 134():170405. PubMed ID: 32920045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of dermal wound healing activity of synthetic peptide SVVYGLR.
    Uchinaka A; Kawaguchi N; Ban T; Hamada Y; Mori S; Maeno Y; Sawa Y; Nagata K; Yamamoto H
    Biochem Biophys Res Commun; 2017 Sep; 491(3):714-720. PubMed ID: 28751213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplantation of myoblast sheets that secrete the novel peptide SVVYGLR improves cardiac function in failing hearts.
    Uchinaka A; Kawaguchi N; Hamada Y; Mori S; Miyagawa S; Saito A; Sawa Y; Matsuura N
    Cardiovasc Res; 2013 Jul; 99(1):102-10. PubMed ID: 23615564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SVVYGLR motif of the thrombin-cleaved N-terminal osteopontin fragment enhances the synthesis of collagen type III in myocardial fibrosis.
    Uchinaka A; Hamada Y; Mori S; Miyagawa S; Saito A; Sawa Y; Matsuura N; Yamamoto H; Kawaguchi N
    Mol Cell Biochem; 2015 Oct; 408(1-2):191-203. PubMed ID: 26112906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of collagen type III in injured myocardium prevents cardiac systolic dysfunction by changing the balance of collagen distribution.
    Uchinaka A; Yoshida M; Tanaka K; Hamada Y; Mori S; Maeno Y; Miyagawa S; Sawa Y; Nagata K; Yamamoto H; Kawaguchi N
    J Thorac Cardiovasc Surg; 2018 Jul; 156(1):217-226.e3. PubMed ID: 29551535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synthetic peptide SVVYGLR promotes myogenic cell motility via the TGFβ1/Smad signaling pathway and facilitates skeletal myogenic differentiation in vitro.
    Hamada Y; Tanaka S; Fujishita Y; Cho JS; Usuki T; Yokoyama Y; Wu X; Mori S; Yamamoto H; Kogo M
    Dent Mater J; 2021 Jul; 40(4):957-963. PubMed ID: 33716279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria transplant therapy improves regeneration and restoration of injured skeletal muscle.
    Alway SE; Paez HG; Pitzer CR; Ferrandi PJ; Khan MM; Mohamed JS; Carson JA; Deschenes MR
    J Cachexia Sarcopenia Muscle; 2023 Feb; 14(1):493-507. PubMed ID: 36604839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can Cytoprotective Cobalt Protoporphyrin Protect Skeletal Muscle and Muscle-derived Stem Cells From Ischemic Injury?
    Wilson HM; Welikson RE; Luo J; Kean TJ; Cao B; Dennis JE; Allen MD
    Clin Orthop Relat Res; 2015 Sep; 473(9):2908-19. PubMed ID: 26070773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic osteopontin-derived peptide SVVYGLR can induce neovascularization in artificial bone marrow scaffold biomaterials.
    Hamada Y; Egusa H; Kaneda Y; Hirata I; Kawaguchi N; Hirao T; Matsumoto T; Yao M; Daito K; Suzuki M; Yatani H; Daito M; Okazaki M; Matsuura N
    Dent Mater J; 2007 Jul; 26(4):487-92. PubMed ID: 17886451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunomodulatory capacity of the local mesenchymal stem cells transplantation after severe skeletal muscle injury in female rats.
    Helal MAM; Shaheen NEM; Abu Zahra FA
    Immunopharmacol Immunotoxicol; 2016 Dec; 38(6):414-422. PubMed ID: 27560658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration.
    Maeda Y; Yonemochi Y; Nakajyo Y; Hidaka H; Ikeda T; Ando Y
    Sci Rep; 2017 Jun; 7(1):3305. PubMed ID: 28607396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.
    Pavlath GK; Thaloor D; Rando TA; Cheong M; English AW; Zheng B
    Dev Dyn; 1998 Aug; 212(4):495-508. PubMed ID: 9707323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synergistic effect of treadmill running on stem-cell transplantation to heal injured skeletal muscle.
    Ambrosio F; Ferrari RJ; Distefano G; Plassmeyer JM; Carvell GE; Deasy BM; Boninger ML; Fitzgerald GK; Huard J
    Tissue Eng Part A; 2010 Mar; 16(3):839-49. PubMed ID: 19788347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beneficial effects of cod protein on skeletal muscle repair following injury.
    Dort J; Sirois A; Leblanc N; Côté CH; Jacques H
    Appl Physiol Nutr Metab; 2012 Jun; 37(3):489-98. PubMed ID: 22509810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteopontin and skeletal muscle myoblasts: association with muscle regeneration and regulation of myoblast function in vitro.
    Uaesoontrachoon K; Yoo HJ; Tudor EM; Pike RN; Mackie EJ; Pagel CN
    Int J Biochem Cell Biol; 2008; 40(10):2303-14. PubMed ID: 18490187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramuscular administration of PEGylated IGF-I improves skeletal muscle regeneration after myotoxic injury.
    Martins KJ; Gehrig SM; Naim T; Saenger S; Baum D; Metzger F; Lynch GS
    Growth Horm IGF Res; 2013 Aug; 23(4):128-33. PubMed ID: 23608055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.