These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 31004978)

  • 1. Magnetically-mediated regeneration and reuse of core-shell Fe
    Sun J; Yang J; Liu Y; Guo M; Wen Q; Sun W; Yao J; Li Y; Jiang F
    Water Res; 2019 Jun; 157():621-629. PubMed ID: 31004978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial iron reduction enhances in-situ control of biogenic hydrogen sulfide by FeOOH granules in sediments of polluted urban waters.
    Sun J; Wei L; Yin R; Jiang F; Shang C
    Water Res; 2020 Mar; 171():115453. PubMed ID: 31918385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen sulfide removal from sediment and water in box culverts/storm drains by iron-based granules.
    Sun JL; Shang C; Kikkert GA
    Water Sci Technol; 2013; 68(12):2626-31. PubMed ID: 24355850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of aqueous hydrogen sulfide by granular ferric hydroxide-kinetics, capacity and reuse.
    Sun J; Zhou J; Shang C; Kikkert GA
    Chemosphere; 2014 Dec; 117():324-9. PubMed ID: 25150683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ reactivation and reuse of micronsized sulfidated zero-valent iron using SRB-enriched culture: A sustainable PRB technology.
    Yang Y; Zhan C; Li Y; Zeng J; Lin K; Sun J; Jiang F
    Water Res; 2024 Apr; 253():121270. PubMed ID: 38359598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of •SO
    Yu X; Sun J; Li G; Huang Y; Li Y; Xia D; Jiang F
    Water Res; 2020 May; 174():115622. PubMed ID: 32145554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive dehalogenation of halomethanes in iron- and sulfate-reducing sediments. 1. Reactivity pattern analysis.
    Kenneke JF; Weber EI
    Environ Sci Technol; 2003 Feb; 37(4):713-20. PubMed ID: 12636269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous removal of hydrogen sulfide, phosphate and emerging organic contaminants, and improvement of sludge dewaterability by oxidant dosing in sulfide-iron-laden sludge.
    Yin R; Peng J; Sun J; Li C; Xia D; Shang C
    Water Res; 2021 Sep; 203():117557. PubMed ID: 34418644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of arsenic in acid wastewater and river sediment by Fe@Fe
    Tang L; Feng H; Tang J; Zeng G; Deng Y; Wang J; Liu Y; Zhou Y
    Water Res; 2017 Jun; 117():175-186. PubMed ID: 28391122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content.
    Laufer K; Byrne JM; Glombitza C; Schmidt C; Jørgensen BB; Kappler A
    Environ Microbiol; 2016 Sep; 18(9):3159-74. PubMed ID: 27234371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertical distribution of Fe and Fe(III)-reducing bacteria in the sediments of Lake Donghu, China.
    Tian C; Wang C; Tian Y; Wu X; Xiao B
    Can J Microbiol; 2015 Aug; 61(8):575-83. PubMed ID: 26156094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive iron in marine sediments.
    Canfield DE
    Geochim Cosmochim Acta; 1989; 53():619-32. PubMed ID: 11539783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles.
    Shi J; Ai Z; Zhang L
    Water Res; 2014 Aug; 59():145-53. PubMed ID: 24793112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orenia metallireducens sp. nov. Strain Z6, a Novel Metal-Reducing Member of the Phylum Firmicutes from the Deep Subsurface.
    Dong Y; Sanford RA; Boyanov MI; Kemner KM; Flynn TM; O'Loughlin EJ; Chang YJ; Locke RA; Weber JR; Egan SM; Mackie RI; Cann I; Fouke BW
    Appl Environ Microbiol; 2016 Nov; 82(21):6440-6453. PubMed ID: 27565620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks.
    Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE
    Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges.
    Bravo AG; Bouchet S; Guédron S; Amouroux D; Dominik J; Zopfi J
    Water Res; 2015 Sep; 80():245-55. PubMed ID: 26005785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe(III) Photoreduction Producing Fe
    Lueder U; Jørgensen BB; Kappler A; Schmidt C
    Environ Sci Technol; 2020 Jan; 54(2):862-869. PubMed ID: 31886652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Index for nitrate dosage calculation on sediment odor control using nitrate-dependent ferrous and sulfide oxidation interactions.
    He Z; Huang R; Liang Y; Yu G; Chong Y; Wang L
    J Environ Manage; 2018 Nov; 226():289-297. PubMed ID: 30121465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.