These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31005079)

  • 1. Atom-density representations for machine learning.
    Willatt MJ; Musil F; Ceriotti M
    J Chem Phys; 2019 Apr; 150(15):154110. PubMed ID: 31005079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials.
    Onat B; Ortner C; Kermode JR
    J Chem Phys; 2020 Oct; 153(14):144106. PubMed ID: 33086812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient implementation of atom-density representations.
    Musil F; Veit M; Goscinski A; Fraux G; Willatt MJ; Stricker M; Junge T; Ceriotti M
    J Chem Phys; 2021 Mar; 154(11):114109. PubMed ID: 33752353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal radial basis for density-based atomic representations.
    Goscinski A; Musil F; Pozdnyakov S; Nigam J; Ceriotti M
    J Chem Phys; 2021 Sep; 155(10):104106. PubMed ID: 34525832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unified theory of atom-centered representations and message-passing machine-learning schemes.
    Nigam J; Pozdnyakov S; Fraux G; Ceriotti M
    J Chem Phys; 2022 May; 156(20):204115. PubMed ID: 35649823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised machine learning in atomistic simulations, between predictions and understanding.
    Ceriotti M
    J Chem Phys; 2019 Apr; 150(15):150901. PubMed ID: 31005087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature optimization for atomistic machine learning yields a data-driven construction of the periodic table of the elements.
    Willatt MJ; Musil F; Ceriotti M
    Phys Chem Chem Phys; 2018 Dec; 20(47):29661-29668. PubMed ID: 30465679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equivariant representations for molecular Hamiltonians and N-center atomic-scale properties.
    Nigam J; Willatt MJ; Ceriotti M
    J Chem Phys; 2022 Jan; 156(1):014115. PubMed ID: 34998321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating long-range physics in atomic-scale machine learning.
    Grisafi A; Ceriotti M
    J Chem Phys; 2019 Nov; 151(20):204105. PubMed ID: 31779318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-Inspired Structural Representations for Molecules and Materials.
    Musil F; Grisafi A; Bartók AP; Ortner C; Csányi G; Ceriotti M
    Chem Rev; 2021 Aug; 121(16):9759-9815. PubMed ID: 34310133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recursive evaluation and iterative contraction of N-body equivariant features.
    Nigam J; Pozdnyakov S; Ceriotti M
    J Chem Phys; 2020 Sep; 153(12):121101. PubMed ID: 33003734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent homology-based descriptor for machine-learning potential of amorphous structures.
    Minamitani E; Obayashi I; Shimizu K; Watanabe S
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems.
    Grisafi A; Wilkins DM; Csányi G; Ceriotti M
    Phys Rev Lett; 2018 Jan; 120(3):036002. PubMed ID: 29400528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Electron Density Prediction Using Weighted Smooth Overlap of Atomic Positions.
    Achar SK; Bernasconi L; Johnson JK
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning.
    Nguyen P; Loveland D; Kim JT; Karande P; Hiszpanski AM; Han TY
    J Chem Inf Model; 2021 May; 61(5):2147-2158. PubMed ID: 33899482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tensor-Reduced Atomic Density Representations.
    Darby JP; Kovács DP; Batatia I; Caro MA; Hart GLW; Ortner C; Csányi G
    Phys Rev Lett; 2023 Jul; 131(2):028001. PubMed ID: 37505943
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.