BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 31005087)

  • 1. Unsupervised machine learning in atomistic simulations, between predictions and understanding.
    Ceriotti M
    J Chem Phys; 2019 Apr; 150(15):150901. PubMed ID: 31005087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addressing uncertainty in atomistic machine learning.
    Peterson AA; Christensen R; Khorshidi A
    Phys Chem Chem Phys; 2017 May; 19(18):10978-10985. PubMed ID: 28418054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atom-density representations for machine learning.
    Willatt MJ; Musil F; Ceriotti M
    J Chem Phys; 2019 Apr; 150(15):154110. PubMed ID: 31005079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creating Machine Learning-Driven Material Recipes Based on Crystal Structure.
    Takahashi K; Takahashi L
    J Phys Chem Lett; 2019 Jan; 10(2):283-288. PubMed ID: 30609373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction to machine learning.
    Baştanlar Y; Ozuysal M
    Methods Mol Biol; 2014; 1107():105-28. PubMed ID: 24272434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating Machine Learning in the Coarse-Grained Molecular Simulation of Polymers.
    Ricci E; Vergadou N
    J Phys Chem B; 2023 Mar; 127(11):2302-2322. PubMed ID: 36888553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learnt bond order potential to model metal-organic (Co-C) heterostructures.
    Narayanan B; Chan H; Kinaci A; Sen FG; Gray SK; Chan MKY; Sankaranarayanan SKRS
    Nanoscale; 2017 Nov; 9(46):18229-18239. PubMed ID: 29043353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STOCK: structure mapper and online coarse-graining kit for molecular simulations.
    Bevc S; Junghans C; Praprotnik M
    J Comput Chem; 2015 Mar; 36(7):467-77. PubMed ID: 25504076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature optimization for atomistic machine learning yields a data-driven construction of the periodic table of the elements.
    Willatt MJ; Musil F; Ceriotti M
    Phys Chem Chem Phys; 2018 Dec; 20(47):29661-29668. PubMed ID: 30465679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures.
    Duong VT; Diessner EM; Grazioli G; Martin RW; Butts CT
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of Machine Learning and Coarse-Grained Molecular Simulations for Polymer Materials: Physical Understandings and Molecular Design.
    Nguyen D; Tao L; Li Y
    Front Chem; 2021; 9():820417. PubMed ID: 35141207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition.
    Jaeger S; Fulle S; Turk S
    J Chem Inf Model; 2018 Jan; 58(1):27-35. PubMed ID: 29268609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic Motif Recognition in (Bio)Polymers: Benchmarks From the Protein Data Bank.
    Helfrecht BA; Gasparotto P; Giberti F; Ceriotti M
    Front Mol Biosci; 2019; 6():24. PubMed ID: 31058166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backmapping coarse-grained macromolecules: An efficient and versatile machine learning approach.
    Li W; Burkhart C; Polińska P; Harmandaris V; Doxastakis M
    J Chem Phys; 2020 Jul; 153(4):041101. PubMed ID: 32752654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration free energies from kernel-based machine learning: Compound-database bias.
    Rauer C; Bereau T
    J Chem Phys; 2020 Jul; 153(1):014101. PubMed ID: 32640817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-Graining of TIP4P/2005, TIP4P-Ew, SPC/E, and TIP3P to Monatomic Anisotropic Water Models Using Relative Entropy Minimization.
    Lu J; Qiu Y; Baron R; Molinero V
    J Chem Theory Comput; 2014 Sep; 10(9):4104-20. PubMed ID: 26588552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overview of Machine Learning Part 1: Fundamentals and Classic Approaches.
    Maleki F; Ovens K; Najafian K; Forghani B; Reinhold C; Forghani R
    Neuroimaging Clin N Am; 2020 Nov; 30(4):e17-e32. PubMed ID: 33039003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sampling Real-Time Atomic Dynamics in Metal Nanoparticles by Combining Experiments, Simulations, and Machine Learning.
    Cioni M; Delle Piane M; Polino D; Rapetti D; Crippa M; Irmak EA; Van Aert S; Bals S; Pavan GM
    Adv Sci (Weinh); 2024 Jul; 11(25):e2307261. PubMed ID: 38654692
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 19.