These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 31005087)

  • 21. Sampling Real-Time Atomic Dynamics in Metal Nanoparticles by Combining Experiments, Simulations, and Machine Learning.
    Cioni M; Delle Piane M; Polino D; Rapetti D; Crippa M; Irmak EA; Van Aert S; Bals S; Pavan GM
    Adv Sci (Weinh); 2024 Jul; 11(25):e2307261. PubMed ID: 38654692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current State and Perspectives of Simulation and Modeling of Aliphatic Isocyanates and Polyisocyanates.
    Lenzi V; Crema A; Pyrlin S; Marques L
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct Mixing of Atomistic Solutes and Coarse-Grained Water.
    Orsi M; Ding W; Palaiokostas M
    J Chem Theory Comput; 2014 Oct; 10(10):4684-93. PubMed ID: 26588159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting the pair correlation functions of silicate and borosilicate glasses using machine learning.
    Ayush K; Sahu P; Ali SM; Patra TK
    Phys Chem Chem Phys; 2024 Jan; 26(2):1094-1104. PubMed ID: 38098432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine Learning Assisted Clustering of Nanoparticle Structures.
    Roncaglia C; Ferrando R
    J Chem Inf Model; 2023 Jan; 63(2):459-473. PubMed ID: 36597194
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites.
    Rzepiela AJ; Louhivuori M; Peter C; Marrink SJ
    Phys Chem Chem Phys; 2011 Jun; 13(22):10437-48. PubMed ID: 21494747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unsupervised Learning Methods for Molecular Simulation Data.
    Glielmo A; Husic BE; Rodriguez A; Clementi C; Noé F; Laio A
    Chem Rev; 2021 Aug; 121(16):9722-9758. PubMed ID: 33945269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A molecular dynamics simulation study of buckyballs in water: atomistic versus coarse-grained models of C60.
    Choudhury N
    J Chem Phys; 2006 Jul; 125(3):34502. PubMed ID: 16863357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Coarse-Grained Molecular Dynamics Study of Carbon Nanoparticle Aggregation.
    Izvekov S; Violi A
    J Chem Theory Comput; 2006 May; 2(3):504-12. PubMed ID: 26626661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interpretable machine learning for inferring the phase boundaries in a nonequilibrium system.
    Casert C; Vieijra T; Nys J; Ryckebusch J
    Phys Rev E; 2019 Feb; 99(2-1):023304. PubMed ID: 30934273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials.
    Omranpour A; Montero De Hijes P; Behler J; Dellago C
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine Learning Techniques in Clinical Vision Sciences.
    Caixinha M; Nunes S
    Curr Eye Res; 2017 Jan; 42(1):1-15. PubMed ID: 27362387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Δ-Learning applied to coarse-grained homogeneous liquids.
    Khot A; Savoie BM
    J Chem Phys; 2023 Aug; 159(5):. PubMed ID: 37526160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Science-Driven Atomistic Machine Learning.
    Margraf JT
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202219170. PubMed ID: 36896758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine Learning Methods in Computational Toxicology.
    Baskin II
    Methods Mol Biol; 2018; 1800():119-139. PubMed ID: 29934890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics: Application to Materials and Biological Systems.
    Gkeka P; Stoltz G; Barati Farimani A; Belkacemi Z; Ceriotti M; Chodera JD; Dinner AR; Ferguson AL; Maillet JB; Minoux H; Peter C; Pietrucci F; Silveira A; Tkatchenko A; Trstanova Z; Wiewiora R; Lelièvre T
    J Chem Theory Comput; 2020 Aug; 16(8):4757-4775. PubMed ID: 32559068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiscale Coarse-Graining via Normal Mode Analysis.
    Xia F; Lu L
    J Chem Theory Comput; 2012 Nov; 8(11):4797-806. PubMed ID: 26605632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled exploration of chemical space by machine learning of coarse-grained representations.
    Hoffmann C; Menichetti R; Kanekal KH; Bereau T
    Phys Rev E; 2019 Sep; 100(3-1):033302. PubMed ID: 31639967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations.
    Jinnouchi R; Miwa K; Karsai F; Kresse G; Asahi R
    J Phys Chem Lett; 2020 Sep; 11(17):6946-6955. PubMed ID: 32787192
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.