These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31005100)

  • 1. Sublinear scaling quantum chemical methods for magnetic shieldings in large molecules.
    Yuan M; Zhang Y; Qu Z; Xiao Y; Liu W
    J Chem Phys; 2019 Apr; 150(15):154113. PubMed ID: 31005100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclei-selected NMR shielding calculations: a sublinear-scaling quantum-chemical method.
    Beer M; Kussmann J; Ochsenfeld C
    J Chem Phys; 2011 Feb; 134(7):074102. PubMed ID: 21341823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-field implementation of NMR chemical shieldings for molecules: direct and converse gauge-including projector-augmented-wave methods.
    Vasconcelos F; de Wijs GA; Havenith RW; Marsman M; Kresse G
    J Chem Phys; 2013 Jul; 139(1):014109. PubMed ID: 23822295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic and electron-correlation effects on the nuclear magnetic resonance shieldings of molecules containing tin and lead atoms.
    Maldonado AF; Aucar GA
    J Phys Chem A; 2014 Sep; 118(36):7863-75. PubMed ID: 25110942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A linear- and sublinear-scaling method for calculating NMR shieldings in atomic orbital-based second-order Møller-Plesset perturbation theory.
    Maurer M; Ochsenfeld C
    J Chem Phys; 2013 May; 138(17):174104. PubMed ID: 23656111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.
    Jankowska M; Kupka T; Stobiński L; Faber R; Lacerda EG; Sauer SP
    J Comput Chem; 2016 Feb; 37(4):395-403. PubMed ID: 26503739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculations of frequency-dependent molecular magnetizabilities with quasi-relativistic time-dependent generalized unrestricted Hartree-Fock method.
    Yoshizawa T; Hada M
    J Comput Chem; 2007 Mar; 28(4):740-7. PubMed ID: 17226833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gauge origin independent calculations of nuclear magnetic shieldings in relativistic four-component theory.
    Ilias M; Saue T; Enevoldsen T; Jensen HJ
    J Chem Phys; 2009 Sep; 131(12):124119. PubMed ID: 19791864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron correlation within the relativistic no-pair approximation.
    Almoukhalalati A; Knecht S; Jensen HJ; Dyall KG; Saue T
    J Chem Phys; 2016 Aug; 145(7):074104. PubMed ID: 27544084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relativistic nuclear magnetic resonance J-coupling with ultrasoft pseudopotentials and the zeroth-order regular approximation.
    Green TF; Yates JR
    J Chem Phys; 2014 Jun; 140(23):234106. PubMed ID: 24952522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear Magnetic Shieldings of Stacked Aromatic and Antiaromatic Molecules.
    Sundholm D; Rauhalahti M; Özcan N; Mera-Adasme R; Kussmann J; Luenser A; Ochsenfeld C
    J Chem Theory Comput; 2017 May; 13(5):1952-1962. PubMed ID: 28287722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical analysis of the long-distance limit of NMR chemical shieldings.
    Lang L; Ravera E; Parigi G; Luchinat C; Neese F
    J Chem Phys; 2022 Apr; 156(15):154115. PubMed ID: 35459319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local unitary transformation method for large-scale two-component relativistic calculations. II. Extension to two-electron Coulomb interaction.
    Seino J; Nakai H
    J Chem Phys; 2012 Oct; 137(14):144101. PubMed ID: 23061833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory.
    Saitow M; Becker U; Riplinger C; Valeev EF; Neese F
    J Chem Phys; 2017 Apr; 146(16):164105. PubMed ID: 28456208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general, recursive, and open-ended response code.
    Ringholm M; Jonsson D; Ruud K
    J Comput Chem; 2014 Mar; 35(8):622-33. PubMed ID: 24500816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct perturbation theory in terms of energy derivatives: fourth-order relativistic corrections at the Hartree-Fock level.
    Stopkowicz S; Gauss J
    J Chem Phys; 2011 Feb; 134(6):064114. PubMed ID: 21322668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes.
    Nozirov F; Kupka T; Stachów M
    J Chem Phys; 2014 Apr; 140(14):144303. PubMed ID: 24735295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Monte Carlo calculations of the dissociation energy of the water dimer.
    Benedek NA; Snook IK; Towler MD; Needs RJ
    J Chem Phys; 2006 Sep; 125(10):104302. PubMed ID: 16999521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.