These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31005110)

  • 1. Effect of iron oxide nanoparticles on fibrin gel formation and its fractal dimension.
    Kirichenko MN; Chaikov LL; Krivokhizha SV; Kirichenko AS; Bulychev NA; Kazaryan MA
    J Chem Phys; 2019 Apr; 150(15):155103. PubMed ID: 31005110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of fibrin gels studied by elastic light scattering techniques: dependence of fractal dimension, gel crossover length, fiber diameter, and fiber density on monomer concentration.
    Ferri F; Greco M; Arcòvito G; De Spirito M; Rocco M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011913. PubMed ID: 12241390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of fibrin gel in fibrinogen-thrombin system: static and dynamic light scattering study.
    Kita R; Takahashi A; Kaibara M; Kubota K
    Biomacromolecules; 2002; 3(5):1013-20. PubMed ID: 12217048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Interaction of fibrinogen with magnetite nanoparticles].
    Bychkova AV; Sorokina ON; Kovarskiĭ AL; Shapiro AB; Leonova VB; Rozenfel'd MA
    Biofizika; 2010; 55(4):605-11. PubMed ID: 20968070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth kinetics and structure of fibrin gels.
    Ferri F; Greco M; Arcovito G; Bassi FA; De Spirito M; Paganini E; Rocco M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031401. PubMed ID: 11308648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gelation dynamics and gel structure of fibrinogen.
    Kubota K; Kogure H; Masuda Y; Toyama Y; Kita R; Takahashi A; Kaibara M
    Colloids Surf B Biointerfaces; 2004 Nov; 38(3-4):103-9. PubMed ID: 15542309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of fibrin. A light scattering study.
    Hantgan RR; Hermans J
    J Biol Chem; 1979 Nov; 254(22):11272-81. PubMed ID: 500644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of catalytic activity of fibrinogen-stabilized gold nanoparticles via thrombin-induced inclusion of nanoparticle into fibrin: Application for thrombin sensing with more than 10
    Lin JH; Huang KH; Zhan SW; Yu CJ; Tseng WL; Hsieh MM
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 210():59-65. PubMed ID: 30445261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel fibrin gel derived from hyaluronic acid-grafted fibrinogen.
    Yang CL; Chen HW; Wang TC; Wang YJ
    Biomed Mater; 2011 Apr; 6(2):025009. PubMed ID: 21393811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro clot model to evaluate fibrin-thrombin effects on fractal dimension of incipient blood clot.
    Sabra A; Lawrence MJ; Curtis D; Hawkins K; Williams PR; Evans PA
    Clin Hemorheol Microcirc; 2019 Jul; -1():147-153. PubMed ID: 31381508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrin in human plasma: gel architectures governed by rate and nature of fibrinogen activation.
    Blombäck B; Carlsson K; Fatah K; Hessel B; Procyk R
    Thromb Res; 1994 Sep; 75(5):521-38. PubMed ID: 7992253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase of fibrin gel elasticity by enzymes: a kinetic approach.
    Akpalo E; Larreta-Garde V
    Acta Biomater; 2010 Feb; 6(2):396-402. PubMed ID: 19664730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering.
    Ziv-Polat O; Skaat H; Shahar A; Margel S
    Int J Nanomedicine; 2012; 7():1259-74. PubMed ID: 22419873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable self-assembly from fibrinogen-gold (fibrinogen-Au) and thrombin-silver (thrombin-Ag) nanoparticle interaction.
    Roy S; Dasgupta AK
    FEBS Lett; 2007 Nov; 581(28):5533-42. PubMed ID: 17983601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change of viscoelastic property and morphology of fibrin affected by antithrombin III and heparin: QCM-Z and AFM study.
    Jung H; Tae G; Kim YH; Johannsmann D
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):111-9. PubMed ID: 19004623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in morphology of fibrin clots induced with thrombin and ferric ions and its pathophysiological consequences.
    Pretorius E; Lipinski B
    Heart Lung Circ; 2013 Jun; 22(6):447-9. PubMed ID: 23219312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of fibrinopeptides by the slow and fast forms of thrombin.
    Vindigni A; Di Cera E
    Biochemistry; 1996 Apr; 35(14):4417-26. PubMed ID: 8605191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry-cured ham restructured with fibrin.
    Romero de Ávila MD; Hoz L; Ordóñez JA; Cambero MI
    Food Chem; 2014 Sep; 159():519-28. PubMed ID: 24767091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels.
    Badiei N; Sowedan AM; Curtis DJ; Brown MR; Lawrence MJ; Campbell AI; Sabra A; Evans PA; Weisel JW; Chernysh IN; Nagaswami C; Williams PR; Hawkins K
    Clin Hemorheol Microcirc; 2015; 60(4):451-64. PubMed ID: 25624413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibrin self-assembly is adapted to oxidation.
    Rosenfeld MA; Bychkova AV; Shchegolikhin AN; Leonova VB; Kostanova EA; Biryukova MI; Sultimova NB; Konstantinova ML
    Free Radic Biol Med; 2016 Jun; 95():55-64. PubMed ID: 26969792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.