These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31005119)

  • 1. A finite element approach to forward modeling of nuclear magnetic resonance measurements in coupled pore systems.
    Mitchell J; Souza A; Fordham E; Boyd A
    J Chem Phys; 2019 Apr; 150(15):154708. PubMed ID: 31005119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational approach to integrate 3D X-ray microtomography and NMR data.
    Lucas-Oliveira E; Araujo-Ferreira AG; Trevizan WA; Fortulan CA; Bonagamba TJ
    J Magn Reson; 2018 Jul; 292():16-24. PubMed ID: 29751275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random-walk technique for simulating NMR measurements and 2D NMR maps of porous media with relaxing and permeable boundaries.
    Toumelin E; Torres-Verdín C; Sun B; Dunn KJ
    J Magn Reson; 2007 Sep; 188(1):83-96. PubMed ID: 17632022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust determination of surface relaxivity from nuclear magnetic resonance DT(2) measurements.
    Luo ZX; Paulsen J; Song YQ
    J Magn Reson; 2015 Oct; 259():146-52. PubMed ID: 26340435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface nuclear magnetic relaxation and dynamics of water and oil in macroporous media.
    Godefroy S; Korb JP; Fleury M; Bryant RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021605. PubMed ID: 11497601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model for the interpretation of nuclear magnetic resonance relaxometry of hydrated porous silicate materials.
    Faux DA; Cachia SH; McDonald PJ; Bhatt JS; Howlett NC; Churakov SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032311. PubMed ID: 25871114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation into the effects of pore connectivity on T
    Ghomeshi S; Kryuchkov S; Kantzas A
    J Magn Reson; 2018 Apr; 289():79-91. PubMed ID: 29476929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore size distributions, pore coupling, and transverse relaxation spectra of porous rocks.
    Kleinberg RL
    Magn Reson Imaging; 1994; 12(2):271-4. PubMed ID: 8170317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement.
    Korb JP
    Prog Nucl Magn Reson Spectrosc; 2018 Feb; 104():12-55. PubMed ID: 29405980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetization evolution in network models of porous rock under conditions of drainage and imbibition.
    Chang D; Ioannidis MA
    J Colloid Interface Sci; 2002 Sep; 253(1):159-70. PubMed ID: 16290842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface nuclear magnetic relaxation and dynamics of water and oil in granular packings and rocks.
    Korb JP; Godefroy S; Fleury M
    Magn Reson Imaging; 2003; 21(3-4):193-9. PubMed ID: 12850707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The modulation of coupled relaxation in porous media.
    Davis LA; Martínez GA; Hassoun TH; Vrubel NK
    Magn Reson Imaging; 2001; 19(3-4):369-73. PubMed ID: 11445313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of surface relaxivity from NMR diffusion measurements.
    Slijkerman WF; Hofman JP
    Magn Reson Imaging; 1998; 16(5-6):541-4. PubMed ID: 9803905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of NMR diffusion measurements in the short gradient pulse limit.
    Moroney BF; Stait-Gardner T; Ghadirian B; Yadav NN; Price WS
    J Magn Reson; 2013 Sep; 234():165-75. PubMed ID: 23887027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water vapor absorption in porous media polluted by calcium nitrate studied by time domain nuclear magnetic resonance.
    Gombia M; Bortolotti V; Brown RJ; Camaiti M; Cavallero L; Fantazzini P
    J Phys Chem B; 2009 Aug; 113(31):10580-6. PubMed ID: 19594125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface diffusion in porous catalysts.
    Weber D; Sederman AJ; Mantle MD; Mitchell J; Gladden LF
    Phys Chem Chem Phys; 2010 Mar; 12(11):2619-24. PubMed ID: 20200738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicit calculation of nuclear-magnetic-resonance relaxation rates in small pores to elucidate molecular-scale fluid dynamics.
    Faux DA; McDonald PJ
    Phys Rev E; 2017 Mar; 95(3-1):033117. PubMed ID: 28415374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength.
    Mitchell J; Chandrasekera TC; Johns ML; Gladden LF; Fordham EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026101. PubMed ID: 20365625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear-magnetic-resonance relaxation due to the translational diffusion of fluid confined to quasi-two-dimensional pores.
    Faux DA; McDonald PJ; Howlett NC
    Phys Rev E; 2017 Mar; 95(3-1):033116. PubMed ID: 28415296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice simulation method to model diffusion and NMR spectra in porous materials.
    Merlet C; Forse AC; Griffin JM; Frenkel D; Grey CP
    J Chem Phys; 2015 Mar; 142(9):094701. PubMed ID: 25747093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.