These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 31005165)

  • 1. The present and future of deep learning in radiology.
    Saba L; Biswas M; Kuppili V; Cuadrado Godia E; Suri HS; Edla DR; Omerzu T; Laird JR; Khanna NN; Mavrogeni S; Protogerou A; Sfikakis PP; Viswanathan V; Kitas GD; Nicolaides A; Gupta A; Suri JS
    Eur J Radiol; 2019 May; 114():14-24. PubMed ID: 31005165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How will "democratization of artificial intelligence" change the future of radiologists?
    Kobayashi Y; Ishibashi M; Kobayashi H
    Jpn J Radiol; 2019 Jan; 37(1):9-14. PubMed ID: 30578448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.
    Thrall JH; Li X; Li Q; Cruz C; Do S; Dreyer K; Brink J
    J Am Coll Radiol; 2018 Mar; 15(3 Pt B):504-508. PubMed ID: 29402533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The future of radiology augmented with Artificial Intelligence: A strategy for success.
    Liew C
    Eur J Radiol; 2018 May; 102():152-156. PubMed ID: 29685530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myths and facts about artificial intelligence: why machine- and deep-learning will not replace interventional radiologists.
    Pesapane F; Tantrige P; Patella F; Biondetti P; Nicosia L; Ianniello A; Rossi UG; Carrafiello G; Ierardi AM
    Med Oncol; 2020 Apr; 37(5):40. PubMed ID: 32246300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning in Medical Imaging.
    Giger ML
    J Am Coll Radiol; 2018 Mar; 15(3 Pt B):512-520. PubMed ID: 29398494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology.
    Tang A; Tam R; Cadrin-Chênevert A; Guest W; Chong J; Barfett J; Chepelev L; Cairns R; Mitchell JR; Cicero MD; Poudrette MG; Jaremko JL; Reinhold C; Gallix B; Gray B; Geis R;
    Can Assoc Radiol J; 2018 May; 69(2):120-135. PubMed ID: 29655580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning in Radiology.
    McBee MP; Awan OA; Colucci AT; Ghobadi CW; Kadom N; Kansagra AP; Tridandapani S; Auffermann WF
    Acad Radiol; 2018 Nov; 25(11):1472-1480. PubMed ID: 29606338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thoracic Radiologists' Versus Computer Scientists' Perspectives on the Future of Artificial Intelligence in Radiology.
    Eltorai AEM; Bratt AK; Guo HH
    J Thorac Imaging; 2020 Jul; 35(4):255-259. PubMed ID: 31609778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence and the radiologist: the future in the Armed Forces Medical Services.
    Sen D; Chakrabarti R; Chatterjee S; Grewal DS; Manrai K
    BMJ Mil Health; 2020 Aug; 166(4):254-256. PubMed ID: 30709922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Top 10 Reviewer Critiques of Radiology Artificial Intelligence (AI) Articles: Qualitative Thematic Analysis of Reviewer Critiques of Machine Learning/Deep Learning Manuscripts Submitted to JMRI.
    Gregory J; Welliver S; Chong J
    J Magn Reson Imaging; 2020 Jul; 52(1):248-254. PubMed ID: 31943495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Price of Artificial Intelligence.
    Coiera E
    Yearb Med Inform; 2019 Aug; 28(1):14-15. PubMed ID: 31022746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning Applications in Radiology.
    Martín Noguerol T; Paulano-Godino F; Martín-Valdivia MT; Menias CO; Luna A
    J Am Coll Radiol; 2019 Sep; 16(9 Pt B):1239-1247. PubMed ID: 31492401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations.
    Recht MP; Dewey M; Dreyer K; Langlotz C; Niessen W; Prainsack B; Smith JJ
    Eur Radiol; 2020 Jun; 30(6):3576-3584. PubMed ID: 32064565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Artificial Intelligence in Radiology - Definition, Potential and Challenges].
    Baessler B
    Praxis (Bern 1994); 2021 Jan; 110(1):48-53. PubMed ID: 33406927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning in breast radiology: current progress and future directions.
    Ou WC; Polat D; Dogan BE
    Eur Radiol; 2021 Jul; 31(7):4872-4885. PubMed ID: 33449174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Intelligence in Imaging: The Radiologist's Role.
    Rubin DL
    J Am Coll Radiol; 2019 Sep; 16(9 Pt B):1309-1317. PubMed ID: 31492409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medical data science in rhinology: Background and implications for clinicians.
    Jun YJ; Jung J; Lee HM
    Am J Otolaryngol; 2020; 41(6):102627. PubMed ID: 32682191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Intelligence May Cause a Significant Disruption to the Radiology Workforce.
    Mazurowski MA
    J Am Coll Radiol; 2019 Aug; 16(8):1077-1082. PubMed ID: 30975611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demystification of AI-driven medical image interpretation: past, present and future.
    Savadjiev P; Chong J; Dohan A; Vakalopoulou M; Reinhold C; Paragios N; Gallix B
    Eur Radiol; 2019 Mar; 29(3):1616-1624. PubMed ID: 30105410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.