These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31005168)

  • 1. Feasibility of Dixon magnetic resonance imaging to quantify effects of physical training on muscle composition-A pilot study in young and healthy men.
    Grimm A; Nickel MD; Chaudry O; Uder M; Jakob F; Kemmler W; Quick HH; Engelke K
    Eur J Radiol; 2019 May; 114():160-166. PubMed ID: 31005168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeatability of Dixon magnetic resonance imaging and magnetic resonance spectroscopy for quantitative muscle fat assessments in the thigh.
    Grimm A; Meyer H; Nickel MD; Nittka M; Raithel E; Chaudry O; Friedberger A; Uder M; Kemmler W; Engelke K; Quick HH
    J Cachexia Sarcopenia Muscle; 2018 Dec; 9(6):1093-1100. PubMed ID: 30221479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparison between 6-point Dixon MRI and MR Spectroscopy to Quantify Muscle Fat in the Thigh of Subjects with Sarcopenia.
    Grimm A; Meyer H; Nickel MD; Nittka M; Raithel E; Chaudry O; Friedberger A; Uder M; Kemmler W; Engelke K; Quick HH
    J Frailty Aging; 2019; 8(1):21-26. PubMed ID: 30734827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of 2-point, 3-point, and 6-point Dixon magnetic resonance imaging with flexible echo timing for muscle fat quantification.
    Grimm A; Meyer H; Nickel MD; Nittka M; Raithel E; Chaudry O; Friedberger A; Uder M; Kemmler W; Quick HH; Engelke K
    Eur J Radiol; 2018 Jun; 103():57-64. PubMed ID: 29803386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Associations of thigh muscle fat infiltration with isometric strength measurements based on chemical shift encoding-based water-fat magnetic resonance imaging.
    Inhuber S; Sollmann N; Schlaeger S; Dieckmeyer M; Burian E; Kohlmeyer C; Karampinos DC; Kirschke JS; Baum T; Kreuzpointner F; Schwirtz A
    Eur Radiol Exp; 2019 Nov; 3(1):45. PubMed ID: 31748839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter- and intra-observer variability of an anatomical landmark-based, manual segmentation method by MRI for the assessment of skeletal muscle fat content and area in subjects from the general population.
    Kiefer LS; Fabian J; Lorbeer R; Machann J; Storz C; Kraus MS; Wintermeyer E; Schlett C; Roemer F; Nikolaou K; Peters A; Bamberg F
    Br J Radiol; 2018 Sep; 91(1089):20180019. PubMed ID: 29658780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle fat quantification using magnetic resonance imaging: case-control study of Charcot-Marie-Tooth disease patients and volunteers.
    Kim HS; Yoon YC; Choi BO; Jin W; Cha JG
    J Cachexia Sarcopenia Muscle; 2019 Jun; 10(3):574-585. PubMed ID: 30873759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of volumetric thigh and paravertebral muscle fat content: comparison of quantitative Dixon (Q-Dixon) magnetic resonance imaging (MRI) with high-speed T
    Zhang W; Fu C; Yan D; Yuan Y; Zhang W; Gu D; Wu Y; Zhang D; Wang L; Cheng X
    Quant Imaging Med Surg; 2024 Jul; 14(7):4490-4505. PubMed ID: 39022270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fat Replacement of Paraspinal Muscles with Aging in Healthy Adults.
    Dahlqvist JR; Vissing CR; Hedermann G; Thomsen C; Vissing J
    Med Sci Sports Exerc; 2017 Mar; 49(3):595-601. PubMed ID: 27741218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated measurement of fat infiltration in the hip abductors from Dixon magnetic resonance imaging.
    Belzunce MA; Henckel J; Fotiadou A; Di Laura A; Hart A
    Magn Reson Imaging; 2020 Oct; 72():61-70. PubMed ID: 32615150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speed of sound ultrasound: comparison with proton density fat fraction assessed with Dixon MRI for fat content quantification of the lower extremity.
    Ruby L; Kunut A; Nakhostin DN; Huber FA; Finkenstaedt T; Frauenfelder T; Sanabria SJ; Rominger MB
    Eur Radiol; 2020 Oct; 30(10):5272-5280. PubMed ID: 32385650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thigh muscle segmentation of chemical shift encoding-based water-fat magnetic resonance images: The reference database MyoSegmenTUM.
    Schlaeger S; Freitag F; Klupp E; Dieckmeyer M; Weidlich D; Inhuber S; Deschauer M; Schoser B; Bublitz S; Montagnese F; Zimmer C; Rummeny EJ; Karampinos DC; Kirschke JS; Baum T
    PLoS One; 2018; 13(6):e0198200. PubMed ID: 29879128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of an active shape model-based semi-automated segmentation algorithm for the analysis of thigh muscle and adipose tissue cross-sectional areas.
    Kemnitz J; Eckstein F; Culvenor AG; Ruhdorfer A; Dannhauer T; Ring-Dimitriou S; Sänger AM; Wirth W
    MAGMA; 2017 Oct; 30(5):489-503. PubMed ID: 28455629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A predictive model for estimating regional skeletal muscle size by two-point dixon magnetic resonance imaging in healthy Koreans.
    Kim CM; Lee CH; Choi YA; Kim BC; Jung DY; Shin MJ
    Arch Gerontol Geriatr; 2017; 69():8-14. PubMed ID: 27866087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-breathing Magnetic Resonance Imaging Assessment of Body Composition in Healthy and Overweight Children: An Observational Study.
    Ly KV; Armstrong T; Yeh J; Ghahremani S; Kim GH; Wu HH; Calkins KL
    J Pediatr Gastroenterol Nutr; 2019 Jun; 68(6):782-787. PubMed ID: 30789865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of Peripheral Quantitative Computed Tomography-Derived Thigh Adipose Tissue Subcompartments in Young Girls Using a 3 T MRI Scanner.
    Blew RM; Lee VR; Bea JW; Hetherington-Rauth MC; Galons JP; Altbach MI; Lohman TG; Going SB
    J Clin Densitom; 2018; 21(4):583-594. PubMed ID: 29705002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR imaging estimates of muscle volume and intramuscular fat infiltration in the thigh: variations with muscle, gender, and age.
    Hogrel JY; Barnouin Y; Azzabou N; Butler-Browne G; Voit T; Moraux A; Leroux G; Behin A; McPhee JS; Carlier PG
    Age (Dordr); 2015 Jun; 37(3):9798. PubMed ID: 26040416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the accuracy of commercial two-point and multi-echo Dixon MRI for quantification of fat in liver, paravertebral muscles, and vertebral bone marrow.
    Haueise T; Schick F; Stefan N; Machann J
    Eur J Radiol; 2024 Mar; 172():111359. PubMed ID: 38325186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved T1, contrast concentration, and pharmacokinetic parameter quantification in the presence of fat with two-point Dixon for dynamic contrast-enhanced magnetic resonance imaging.
    Le Y; Dale B; Akisik F; Koons K; Lin C
    Magn Reson Med; 2016 Apr; 75(4):1677-84. PubMed ID: 25988338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lean muscle volume of the thigh has a stronger relationship with muscle power than muscle strength in women with knee osteoarthritis.
    Davison MJ; Maly MR; Keir PJ; Hapuhennedige SM; Kron AT; Adachi JD; Beattie KA
    Clin Biomech (Bristol); 2017 Jan; 41():92-97. PubMed ID: 28038376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.