BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31005274)

  • 1. SON haploinsufficiency causes impaired pre-mRNA splicing of CAKUT genes and heterogeneous renal phenotypes.
    Kim JH; Park EY; Chitayat D; Stachura DL; Schaper J; Lindstrom K; Jewett T; Wieczorek D; Draaisma JM; Sinnema M; Hoeberigs C; Hempel M; Bachman KK; Seeley AH; Stone JK; Kong HK; Vukadin L; Richard A; Shinde DN; McWalter K; Si YC; Douglas G; Lim ST; Vissers LELM; Lemaire M; Ahn EE
    Kidney Int; 2019 Jun; 95(6):1494-1504. PubMed ID: 31005274
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Le Tanno P; Breton J; Bidart M; Satre V; Harbuz R; Ray PF; Bosson C; Dieterich K; Jaillard S; Odent S; Poke G; Beddow R; Digilio MC; Novelli A; Bernardini L; Pisanti MA; Mackenroth L; Hackmann K; Vogel I; Christensen R; Fokstuen S; Béna F; Amblard F; Devillard F; Vieville G; Apostolou A; Jouk PS; Guebre-Egziabher F; Sartelet H; Coutton C
    J Med Genet; 2017 Jul; 54(7):502-510. PubMed ID: 28270404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association between the clinical presentation of congenital anomalies of the kidney and urinary tract (CAKUT) and gene mutations: an analysis of 66 patients at a single institution.
    Ishiwa S; Sato M; Morisada N; Nishi K; Kanamori T; Okutsu M; Ogura M; Sako M; Kosuga M; Kamei K; Ito S; Nozu K; Iijima K; Ishikura K
    Pediatr Nephrol; 2019 Aug; 34(8):1457-1464. PubMed ID: 30937553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-exome sequencing identifies mutations of TBC1D1 encoding a Rab-GTPase-activating protein in patients with congenital anomalies of the kidneys and urinary tract (CAKUT).
    Kosfeld A; Kreuzer M; Daniel C; Brand F; Schäfer AK; Chadt A; Weiss AC; Riehmer V; Jeanpierre C; Klintschar M; Bräsen JH; Amann K; Pape L; Kispert A; Al-Hasani H; Haffner D; Weber RG
    Hum Genet; 2016 Jan; 135(1):69-87. PubMed ID: 26572137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De Novo Mutations in SON Disrupt RNA Splicing of Genes Essential for Brain Development and Metabolism, Causing an Intellectual-Disability Syndrome.
    Kim JH; Shinde DN; Reijnders MRF; Hauser NS; Belmonte RL; Wilson GR; Bosch DGM; Bubulya PA; Shashi V; Petrovski S; Stone JK; Park EY; Veltman JA; Sinnema M; Stumpel CTRM; Draaisma JM; Nicolai J; ; Yntema HG; Lindstrom K; de Vries BBA; Jewett T; Santoro SL; Vogt J; ; Bachman KK; Seeley AH; Krokosky A; Turner C; Rohena L; Hempel M; Kortüm F; Lessel D; Neu A; Strom TM; Wieczorek D; Bramswig N; Laccone FA; Behunova J; Rehder H; Gordon CT; Rio M; Romana S; Tang S; El-Khechen D; Cho MT; McWalter K; Douglas G; Baskin B; Begtrup A; Funari T; Schoch K; Stegmann APA; Stevens SJC; Zhang DE; Traver D; Yao X; MacArthur DG; Brunner HG; Mancini GM; Myers RM; Owen LB; Lim ST; Stachura DL; Vissers LELM; Ahn EYE
    Am J Hum Genet; 2016 Sep; 99(3):711-719. PubMed ID: 27545680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncoding rare variants of TBX6 in congenital anomalies of the kidney and urinary tract.
    Dong S; Wang C; Li X; Shen Q; Fu X; Wu M; Song C; Yang N; Wu Y; Wang H; Jin L; Xu H; Zhang F
    Mol Genet Genomics; 2019 Apr; 294(2):493-500. PubMed ID: 30604070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIX1 gene: absence of mutations in children with isolated congenital anomalies of kidney and urinary tract.
    Negrisolo S; Centi S; Benetti E; Ghirardo G; Della Vella M; Murer L; Artifoni L
    J Nephrol; 2014 Dec; 27(6):667-71. PubMed ID: 24899122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical Integration of Genome Diagnostics for Congenital Anomalies of the Kidney and Urinary Tract.
    Westland R; Renkema KY; Knoers NVAM
    Clin J Am Soc Nephrol; 2020 Dec; 16(1):128-137. PubMed ID: 32312792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract.
    Hwang DY; Dworschak GC; Kohl S; Saisawat P; Vivante A; Hilger AC; Reutter HM; Soliman NA; Bogdanovic R; Kehinde EO; Tasic V; Hildebrandt F
    Kidney Int; 2014 Jun; 85(6):1429-33. PubMed ID: 24429398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A homozygous HOXA11 variation as a potential novel cause of autosomal recessive congenital anomalies of the kidney and urinary tract.
    Saygili S; Atayar E; Canpolat N; Elicevik M; Kurugoglu S; Sever L; Caliskan S; Ozaltin F
    Clin Genet; 2020 Oct; 98(4):390-395. PubMed ID: 32666543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern of clinical presentation of congenital anomalies of the kidney and urinary tract among infants and children.
    Soliman NA; Ali RI; Ghobrial EE; Habib EI; Ziada AM
    Nephrology (Carlton); 2015 Jun; 20(6):413-8. PubMed ID: 25645028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney and urinary tract and identification of a new causative gene.
    Bekheirnia MR; Bekheirnia N; Bainbridge MN; Gu S; Coban Akdemir ZH; Gambin T; Janzen NK; Jhangiani SN; Muzny DM; Michael M; Brewer ED; Elenberg E; Kale AS; Riley AA; Swartz SJ; Scott DA; Yang Y; Srivaths PR; Wenderfer SE; Bodurtha J; Applegate CD; Velinov M; Myers A; Borovik L; Craigen WJ; Hanchard NA; Rosenfeld JA; Lewis RA; Gonzales ET; Gibbs RA; Belmont JW; Roth DR; Eng C; Braun MC; Lupski JR; Lamb DJ
    Genet Med; 2017 Apr; 19(4):412-420. PubMed ID: 27657687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical characteristics of HNF1B-related disorders in a Japanese population.
    Nagano C; Morisada N; Nozu K; Kamei K; Tanaka R; Kanda S; Shiona S; Araki Y; Ohara S; Matsumura C; Kasahara K; Mori Y; Seo A; Miura K; Washiyama M; Sugimoto K; Harada R; Tazoe S; Kourakata H; Enseki M; Aotani D; Yamada T; Sakakibara N; Yamamura T; Minamikawa S; Ishikura K; Ito S; Hattori M; Iijima K
    Clin Exp Nephrol; 2019 Sep; 23(9):1119-1129. PubMed ID: 31131422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion in the
    Kanda S; Ohmuraya M; Akagawa H; Horita S; Yoshida Y; Kaneko N; Sugawara N; Ishizuka K; Miura K; Harita Y; Yamamoto T; Oka A; Araki K; Furukawa T; Hattori M
    J Am Soc Nephrol; 2020 Jan; 31(1):139-147. PubMed ID: 31862704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Genetic Basis of Congenital Anomalies of the Kidney and Urinary Tract].
    Bodria M; Sanna-Cherchi S
    G Ital Nefrol; 2015; 32 Suppl 64():. PubMed ID: 26479062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Primer on Congenital Anomalies of the Kidneys and Urinary Tracts (CAKUT).
    Murugapoopathy V; Gupta IR
    Clin J Am Soc Nephrol; 2020 May; 15(5):723-731. PubMed ID: 32188635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishing SON in 21q22.11 as a cause a new syndromic form of intellectual disability: Possible contribution to Braddock-Carey syndrome phenotype.
    Takenouchi T; Miura K; Uehara T; Mizuno S; Kosaki K
    Am J Med Genet A; 2016 Oct; 170(10):2587-90. PubMed ID: 27256762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GEN1 as a risk factor for human congenital anomalies of the kidney and urinary tract.
    Du X; Wang C; Liu J; Yu M; Ju H; Xue S; Li Y; Liu J; Dai R; Chen J; Zhai Y; Rao J; Wang X; Sun Y; Sun L; Wu X; Xu H; Shen Q
    Hum Genomics; 2024 Apr; 18(1):41. PubMed ID: 38654324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of next generation sequencing on our understanding of CAKUT.
    Nigam A; Knoers NVAM; Renkema KY
    Semin Cell Dev Biol; 2019 Jul; 91():104-110. PubMed ID: 30172048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ACE serum level and I/D gene polymorphism in children with obstructive uropathies and other congenital anomalies of the kidney and urinary tract.
    Kostadinova ES; Miteva LD; Stanilova SA
    Nephrology (Carlton); 2017 Aug; 22(8):609-616. PubMed ID: 27206329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.