These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 31005579)

  • 21. Analysis of distance-based protein structure prediction by deep learning in CASP13.
    Xu J; Wang S
    Proteins; 2019 Dec; 87(12):1069-1081. PubMed ID: 31471916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving protein fold recognition with hybrid profiles combining sequence and structure evolution.
    Ghouzam Y; Postic G; de Brevern AG; Gelly JC
    Bioinformatics; 2015 Dec; 31(23):3782-9. PubMed ID: 26254434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence alignment using machine learning for accurate template-based protein structure prediction.
    Makigaki S; Ishida T
    Bioinformatics; 2020 Jan; 36(1):104-111. PubMed ID: 31197318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applying and improving AlphaFold at CASP14.
    Jumper J; Evans R; Pritzel A; Green T; Figurnov M; Ronneberger O; Tunyasuvunakool K; Bates R; Žídek A; Potapenko A; Bridgland A; Meyer C; Kohl SAA; Ballard AJ; Cowie A; Romera-Paredes B; Nikolov S; Jain R; Adler J; Back T; Petersen S; Reiman D; Clancy E; Zielinski M; Steinegger M; Pacholska M; Berghammer T; Silver D; Vinyals O; Senior AW; Kavukcuoglu K; Kohli P; Hassabis D
    Proteins; 2021 Dec; 89(12):1711-1721. PubMed ID: 34599769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does inclusion of residue-residue contact information boost protein threading?
    Bhattacharya S; Bhattacharya D
    Proteins; 2019 Jul; 87(7):596-606. PubMed ID: 30882932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.
    Kurgan L; Cios K; Chen K
    BMC Bioinformatics; 2008 May; 9():226. PubMed ID: 18452616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination.
    Lobley A; Sadowski MI; Jones DT
    Bioinformatics; 2009 Jul; 25(14):1761-7. PubMed ID: 19429599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein Science Meets Artificial Intelligence: A Systematic Review and a Biochemical Meta-Analysis of an Inter-Field.
    Villalobos-Alva J; Ochoa-Toledo L; Villalobos-Alva MJ; Aliseda A; Pérez-Escamirosa F; Altamirano-Bustamante NF; Ochoa-Fernández F; Zamora-Solís R; Villalobos-Alva S; Revilla-Monsalve C; Kemper-Valverde N; Altamirano-Bustamante MM
    Front Bioeng Biotechnol; 2022; 10():788300. PubMed ID: 35875501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decoding the link of microbiome niches with homologous sequences enables accurately targeted protein structure prediction.
    Yang P; Zheng W; Ning K; Zhang Y
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34873061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms.
    AlQuraishi M; Sorger PK
    Nat Methods; 2021 Oct; 18(10):1169-1180. PubMed ID: 34608321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved Protein Structure Prediction Using a New Multi-Scale Network and Homologous Templates.
    Su H; Wang W; Du Z; Peng Z; Gao SH; Cheng MM; Yang J
    Adv Sci (Weinh); 2021 Dec; 8(24):e2102592. PubMed ID: 34719864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.
    Wang D; Zeng S; Xu C; Qiu W; Liang Y; Joshi T; Xu D
    Bioinformatics; 2017 Dec; 33(24):3909-3916. PubMed ID: 29036382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age.
    Schaarschmidt J; Monastyrskyy B; Kryshtafovych A; Bonvin AMJJ
    Proteins; 2018 Mar; 86 Suppl 1(Suppl Suppl 1):51-66. PubMed ID: 29071738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PYTHIA: Deep Learning Approach for Local Protein Conformation Prediction.
    Cretin G; Galochkina T; de Brevern AG; Gelly JC
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction.
    Wu S; Zhang Y
    Bioinformatics; 2008 Apr; 24(7):924-31. PubMed ID: 18296462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein structure prediction enhanced with evolutionary diversity: SPEED.
    DeBartolo J; Hocky G; Wilde M; Xu J; Freed KF; Sosnick TR
    Protein Sci; 2010 Mar; 19(3):520-34. PubMed ID: 20066664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein Fold Recognition Based on Auto-Weighted Multi-View Graph Embedding Learning Model.
    Yan K; Wen J; Xu Y; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2682-2691. PubMed ID: 32356759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discriminative learning for protein conformation sampling.
    Zhao F; Li S; Sterner BW; Xu J
    Proteins; 2008 Oct; 73(1):228-40. PubMed ID: 18412258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.