BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31005689)

  • 1. Investigating architecture and structure-function relationships in cold shock DNA-binding domain family using structural genomics-based approach.
    Amir M; Kumar V; Dohare R; Rehman MT; Hussain A; Alajmi MF; El-Seedi HR; Hassan HMA; Islam A; Ahmad F; Hassan MI
    Int J Biol Macromol; 2019 Jul; 133():484-494. PubMed ID: 31005689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Taxonomic distribution, repeats, and functions of the S1 domain-containing proteins as members of the OB-fold family.
    Deryusheva EI; Machulin AV; Selivanova OM; Galzitskaya OV
    Proteins; 2017 Apr; 85(4):602-613. PubMed ID: 28056497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence, structure and evolutionary analysis of cold shock domain proteins, a member of OB fold family.
    Amir M; Kumar V; Dohare R; Islam A; Ahmad F; Hassan MI
    J Evol Biol; 2018 Dec; 31(12):1903-1917. PubMed ID: 30267552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the Relationship between the S1 Domain and Its Molecular Functions Derived from Studies of the Tertiary Structure.
    Deryusheva EI; Machulin AV; Matyunin MA; Galzitskaya OV
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31614904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The solution structure and DNA-binding properties of the cold-shock domain of the human Y-box protein YB-1.
    Kloks CP; Spronk CA; Lasonder E; Hoffmann A; Vuister GW; Grzesiek S; Hilbers CW
    J Mol Biol; 2002 Feb; 316(2):317-26. PubMed ID: 11851341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold-Shock Domains-Abundance, Structure, Properties, and Nucleic-Acid Binding.
    Heinemann U; Roske Y
    Cancers (Basel); 2021 Jan; 13(2):. PubMed ID: 33430354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The large family of PC4-like domains - similar folds and functions throughout all kingdoms of life.
    Janowski R; Niessing D
    RNA Biol; 2020 Sep; 17(9):1228-1238. PubMed ID: 32476604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleic acid recognition by OB-fold proteins.
    Theobald DL; Mitton-Fry RM; Wuttke DS
    Annu Rev Biophys Biomol Struct; 2003; 32():115-33. PubMed ID: 12598368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage.
    Bernstein DA; Eggington JM; Killoran MP; Misic AM; Cox MM; Keck JL
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8575-80. PubMed ID: 15159541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins.
    Chaikam V; Karlson DT
    BMB Rep; 2010 Jan; 43(1):1-8. PubMed ID: 20132728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding.
    Bochkarev A; Bochkareva E; Frappier L; Edwards AM
    EMBO J; 1999 Aug; 18(16):4498-504. PubMed ID: 10449415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains.
    Balaji S; Babu MM; Iyer LM; Aravind L
    Nucleic Acids Res; 2005; 33(13):3994-4006. PubMed ID: 16040597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C-terminal zinc finger domain of Arabidopsis cold shock domain proteins is important for RNA chaperone activity during cold adaptation.
    Park SJ; Kwak KJ; Jung HJ; Lee HJ; Kang H
    Phytochemistry; 2010 Apr; 71(5-6):543-7. PubMed ID: 20060550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the HIN domain in regulation of innate immune responses.
    Shaw N; Liu ZJ
    Mol Cell Biol; 2014 Jan; 34(1):2-15. PubMed ID: 24164899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches.
    Aravind L; Koonin EV
    J Mol Biol; 1999 Apr; 287(5):1023-40. PubMed ID: 10222208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structural basis of DNA binding by the single-stranded DNA-binding protein from Sulfolobus solfataricus.
    Gamsjaeger R; Kariawasam R; Gimenez AX; Touma C; McIlwain E; Bernardo RE; Shepherd NE; Ataide SF; Dong Q; Richard DJ; White MF; Cubeddu L
    Biochem J; 2015 Jan; 465(2):337-46. PubMed ID: 25367669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription antitermination by translation initiation factor IF1.
    Phadtare S; Kazakov T; Bubunenko M; Court DL; Pestova T; Severinov K
    J Bacteriol; 2007 Jun; 189(11):4087-93. PubMed ID: 17384193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold shock domain protein from Philosamia ricini prefers single-stranded nucleic acids binding.
    Mani A; Yadava PK; Gupta DK
    J Biomol Struct Dyn; 2012; 30(5):532-41. PubMed ID: 22734485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Y-box proteins combine versatile cold shock domains and arginine-rich motifs (ARMs) for pleiotropic functions in RNA biology.
    Kleene KC
    Biochem J; 2018 Sep; 475(17):2769-2784. PubMed ID: 30206185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BOF: a novel family of bacterial OB-fold proteins.
    Ginalski K; Kinch L; Rychlewski L; Grishin NV
    FEBS Lett; 2004 Jun; 567(2-3):297-301. PubMed ID: 15178340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.