These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31005853)

  • 41. Age-related alterations in reactive stepping following unexpected mediolateral perturbations during gait initiation.
    Shulman D; Spencer A; Vallis LA
    Gait Posture; 2018 Jul; 64():130-134. PubMed ID: 29902716
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adaptive feedback potential in dynamic stability during disturbed walking in the elderly.
    Bierbaum S; Peper A; Karamanidis K; Arampatzis A
    J Biomech; 2011 Jul; 44(10):1921-6. PubMed ID: 21555126
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces.
    Ilmane N; Croteau S; Duclos C
    J Biomech; 2015 Feb; 48(3):441-8. PubMed ID: 25557656
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Locomotor stability and adaptation during perturbed walking across the adult female lifespan.
    McCrum C; Epro G; Meijer K; Zijlstra W; Brüggemann GP; Karamanidis K
    J Biomech; 2016 May; 49(7):1244-1247. PubMed ID: 26970886
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relationship between margin of stability and deviations in spatiotemporal gait features in healthy young adults.
    Sivakumaran S; Schinkel-Ivy A; Masani K; Mansfield A
    Hum Mov Sci; 2018 Feb; 57():366-373. PubMed ID: 28987772
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of temporal constraints on medio-lateral stability when negotiating obstacles.
    Nakano W; Fukaya T; Kanai Y; Akizuki K; Ohashi Y
    Gait Posture; 2015 Jul; 42(2):158-64. PubMed ID: 26028527
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of cognitive dual tasks on balance during walking in physically fit elderly people.
    van Iersel MB; Ribbers H; Munneke M; Borm GF; Rikkert MG
    Arch Phys Med Rehabil; 2007 Feb; 88(2):187-91. PubMed ID: 17270516
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cognitive demand and predictive adaptational responses in dynamic stability control.
    Bohm S; Mersmann F; Bierbaum S; Dietrich R; Arampatzis A
    J Biomech; 2012 Sep; 45(14):2330-6. PubMed ID: 22857944
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptive control of gait stability in reducing slip-related backward loss of balance.
    Bhatt T; Wening JD; Pai YC
    Exp Brain Res; 2006 Mar; 170(1):61-73. PubMed ID: 16344930
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recovery from forward loss of balance in young and older adults using the stepping strategy.
    Carty CP; Mills P; Barrett R
    Gait Posture; 2011 Feb; 33(2):261-7. PubMed ID: 21146992
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visual guidance of landing behaviour when stepping down to a new level.
    Buckley JG; MacLellan MJ; Tucker MW; Scally AJ; Bennett SJ
    Exp Brain Res; 2008 Jan; 184(2):223-32. PubMed ID: 17726604
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in the temporal and distance parameters of gait evoked by negotiation of curbs.
    Crosbie J; Ko V
    Aust J Physiother; 2000; 46(2):103-112. PubMed ID: 11676794
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of shoe type on descending a curb.
    George J; Heller M; Kuzel M
    Work; 2012; 41 Suppl 1():3333-8. PubMed ID: 22317224
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of the margin of stability to quantify stability in pathologic gait - a qualitative systematic review.
    Watson F; Fino PC; Thornton M; Heracleous C; Loureiro R; Leong JJH
    BMC Musculoskelet Disord; 2021 Jun; 22(1):597. PubMed ID: 34182955
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptation of the gait initiation process for stepping on to a new level using a single step.
    Gélat T; Brenière Y
    Exp Brain Res; 2000 Aug; 133(4):538-46. PubMed ID: 10985688
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Obesity May Not Induce Dynamic Stability Disadvantage during Overground Walking among Young Adults.
    Liu ZQ; Yang F
    PLoS One; 2017; 12(1):e0169766. PubMed ID: 28085914
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Afferent control of walking: are there distinct deficits associated to loss of fibres of different diameter?
    Nardone A; Corna S; Turcato AM; Schieppati M
    Clin Neurophysiol; 2014 Feb; 125(2):327-35. PubMed ID: 23948160
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of weight-bearing asymmetry on dynamic postural stability in healthy young individuals.
    de Kam D; Kamphuis JF; Weerdesteyn V; Geurts AC
    Gait Posture; 2016 Mar; 45():56-61. PubMed ID: 26979884
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of an inclined walking surface and balance abilities on spatiotemporal gait parameters of older adults.
    Ferraro RA; Pinto-Zipp G; Simpkins S; Clark M
    J Geriatr Phys Ther; 2013; 36(1):31-8. PubMed ID: 22627491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.