These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31006071)

  • 1. Dynamic reconfiguration of the functional brain network after musical training in young adults.
    Li Q; Wang X; Wang S; Xie Y; Li X; Xie Y; Li S
    Brain Struct Funct; 2019 Jun; 224(5):1781-1795. PubMed ID: 31006071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Musical training induces functional and structural auditory-motor network plasticity in young adults.
    Li Q; Wang X; Wang S; Xie Y; Li X; Xie Y; Li S
    Hum Brain Mapp; 2018 May; 39(5):2098-2110. PubMed ID: 29400420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. More Flexible Integration of Functional Systems After Musical Training in Young Adults.
    Li Q; Wang X; Wang S; Xie Y; Xie Y; Li S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):817-824. PubMed ID: 32142446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory-somatosensory integration and cortical plasticity in musical training.
    Pantev C; Lappe C; Herholz SC; Trainor L
    Ann N Y Acad Sci; 2009 Jul; 1169():143-50. PubMed ID: 19673770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term effects of musical training and functional plasticity in salience system.
    Luo C; Tu S; Peng Y; Gao S; Li J; Dong L; Li G; Lai Y; Li H; Yao D
    Neural Plast; 2014; 2014():180138. PubMed ID: 25478236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical plasticity induced by short-term unimodal and multimodal musical training.
    Lappe C; Herholz SC; Trainor LJ; Pantev C
    J Neurosci; 2008 Sep; 28(39):9632-9. PubMed ID: 18815249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical plasticity induced by short-term multimodal musical rhythm training.
    Lappe C; Trainor LJ; Herholz SC; Pantev C
    PLoS One; 2011; 6(6):e21493. PubMed ID: 21747907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of long-term abacus training on modular properties of functional brain network.
    Xie Y; Weng J; Wang C; Xu T; Peng X; Chen F
    Neuroimage; 2018 Dec; 183():811-817. PubMed ID: 30149141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural neuroplasticity in expert pianists depends on the age of musical training onset.
    Vaquero L; Hartmann K; Ripollés P; Rojo N; Sierpowska J; François C; Càmara E; van Vugt FT; Mohammadi B; Samii A; Münte TF; Rodríguez-Fornells A; Altenmüller E
    Neuroimage; 2016 Feb; 126():106-19. PubMed ID: 26584868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of early musical training on striatal functional connectivity.
    van Vugt FT; Hartmann K; Altenmüller E; Mohammadi B; Margulies DS
    Neuroimage; 2021 Sep; 238():118251. PubMed ID: 34116147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Musical training as a framework for brain plasticity: behavior, function, and structure.
    Herholz SC; Zatorre RJ
    Neuron; 2012 Nov; 76(3):486-502. PubMed ID: 23141061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
    Hearne LJ; Cocchi L; Zalesky A; Mattingley JB
    J Neurosci; 2017 Aug; 37(35):8399-8411. PubMed ID: 28760864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Musicians and music making as a model for the study of brain plasticity.
    Schlaug G
    Prog Brain Res; 2015; 217():37-55. PubMed ID: 25725909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural network retuning and neural predictors of learning success associated with cello training.
    Wollman I; Penhune V; Segado M; Carpentier T; Zatorre RJ
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E6056-E6064. PubMed ID: 29891670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Musical expertise is related to altered functional connectivity during audiovisual integration.
    Paraskevopoulos E; Kraneburg A; Herholz SC; Bamidis PD; Pantev C
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12522-7. PubMed ID: 26371305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding functional brain reorganization for naturalistic piano playing in novice pianists.
    Olszewska AM; Gaca M; Droździel D; Widlarz A; Herman AM; Marchewka A
    J Neurosci Res; 2024 Feb; 102(2):e25312. PubMed ID: 38400578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological evidences demonstrating differences in brain functions between nonmusicians and musicians.
    Zhang L; Peng W; Chen J; Hu L
    Sci Rep; 2015 Sep; 5():13796. PubMed ID: 26338509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of Functional Connectivity in Auditory-Motor Networks in Musicians Compared with Nonmusicians.
    Palomar-García MÁ; Zatorre RJ; Ventura-Campos N; Bueichekú E; Ávila C
    Cereb Cortex; 2017 May; 27(5):2768-2778. PubMed ID: 27166170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Musical training increases functional connectivity, but does not enhance mu suppression.
    Wu CC; Hamm JP; Lim VK; Kirk IJ
    Neuropsychologia; 2017 Sep; 104():223-233. PubMed ID: 28864245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of musical practice on structural plasticity: the dynamics of grey matter changes.
    Groussard M; Viader F; Landeau B; Desgranges B; Eustache F; Platel H
    Brain Cogn; 2014 Oct; 90():174-80. PubMed ID: 25127369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.