BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 31006538)

  • 1. Intrinsically Disordered Protein TEX264 Mediates ER-phagy.
    Chino H; Hatta T; Natsume T; Mizushima N
    Mol Cell; 2019 Jun; 74(5):909-921.e6. PubMed ID: 31006538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TEX264 Is an Endoplasmic Reticulum-Resident ATG8-Interacting Protein Critical for ER Remodeling during Nutrient Stress.
    An H; Ordureau A; Paulo JA; Shoemaker CJ; Denic V; Harper JW
    Mol Cell; 2019 Jun; 74(5):891-908.e10. PubMed ID: 31006537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation by casein kinase 2 enhances the interaction between ER-phagy receptor TEX264 and ATG8 proteins.
    Chino H; Yamasaki A; Ode KL; Ueda HR; Noda NN; Mizushima N
    EMBO Rep; 2022 Jun; 23(6):e54801. PubMed ID: 35417087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excessive ER-phagy mediated by the autophagy receptor FAM134B results in ER stress, the unfolded protein response, and cell death in HeLa cells.
    Liao Y; Duan B; Zhang Y; Zhang X; Xia B
    J Biol Chem; 2019 Dec; 294(52):20009-20023. PubMed ID: 31748416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes.
    Mochida K; Yamasaki A; Matoba K; Kirisako H; Noda NN; Nakatogawa H
    Nat Commun; 2020 Jul; 11(1):3306. PubMed ID: 32620754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATL3 Is a Tubular ER-Phagy Receptor for GABARAP-Mediated Selective Autophagy.
    Chen Q; Xiao Y; Chai P; Zheng P; Teng J; Chen J
    Curr Biol; 2019 Mar; 29(5):846-855.e6. PubMed ID: 30773365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-Inflammatory Anthranilate Analogue Enhances Autophagy through mTOR and Promotes ER-Turnover through TEX264 during Alzheimer-Associated Neuroinflammation.
    Wang Z; Huang J; Yang SP; Weaver DF
    ACS Chem Neurosci; 2022 Feb; 13(3):406-422. PubMed ID: 35061945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Picky Eating at the ER-phagy Buffet.
    Wilkinson S
    Trends Biochem Sci; 2019 Sep; 44(9):731-733. PubMed ID: 31176531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Role for Macro-ER-Phagy in ER Quality Control.
    Lipatova Z; Segev N
    PLoS Genet; 2015 Jul; 11(7):e1005390. PubMed ID: 26181331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atlastins remodel the endoplasmic reticulum for selective autophagy.
    Liang JR; Lingeman E; Ahmed S; Corn JE
    J Cell Biol; 2018 Oct; 217(10):3354-3367. PubMed ID: 30143524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal-Retaining Autophagy Indicator as a Quantitative Imaging Method for ER-Phagy.
    Jimenez-Moreno N; Salomo-Coll C; Murphy LC; Wilkinson S
    Cells; 2023 Apr; 12(8):. PubMed ID: 37190043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TEX264 is a major receptor for mammalian reticulophagy.
    Delorme-Axford E; Popelka H; Klionsky DJ
    Autophagy; 2019 Oct; 15(10):1677-1681. PubMed ID: 31362563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CCPG1 recognizes endoplasmic reticulum luminal proteins for selective ER-phagy.
    Ishii S; Chino H; Ode KL; Kurikawa Y; Ueda HR; Matsuura A; Mizushima N; Itakura E
    Mol Biol Cell; 2023 Apr; 34(4):ar29. PubMed ID: 36735498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FAM134B oligomerization drives endoplasmic reticulum membrane scission for ER-phagy.
    Jiang X; Wang X; Ding X; Du M; Li B; Weng X; Zhang J; Li L; Tian R; Zhu Q; Chen S; Wang L; Liu W; Fang L; Neculai D; Sun Q
    EMBO J; 2020 Mar; 39(5):e102608. PubMed ID: 31930741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of endoplasmic reticulum turnover by selective autophagy.
    Khaminets A; Heinrich T; Mari M; Grumati P; Huebner AK; Akutsu M; Liebmann L; Stolz A; Nietzsche S; Koch N; Mauthe M; Katona I; Qualmann B; Weis J; Reggiori F; Kurth I; Hübner CA; Dikic I
    Nature; 2015 Jun; 522(7556):354-8. PubMed ID: 26040720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery.
    Song S; Tan J; Miao Y; Zhang Q
    J Cell Physiol; 2018 May; 233(5):3867-3874. PubMed ID: 28777470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Principles of Selective ER Autophagy.
    Wilkinson S
    J Mol Biol; 2020 Jan; 432(1):185-205. PubMed ID: 31100386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When acidic residues do not mimic phosphorylation: high-affinity binding of the reticulophagy receptor TEX264 to LC3/GABARAP.
    Popelka H; Klionsky DJ
    Autophagy; 2022 Nov; 18(11):2515-2518. PubMed ID: 36041015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A UPR-Induced Soluble ER-Phagy Receptor Acts with VAPs to Confer ER Stress Resistance.
    Zhao D; Zou CX; Liu XM; Jiang ZD; Yu ZQ; Suo F; Du TY; Dong MQ; He W; Du LL
    Mol Cell; 2020 Sep; 79(6):963-977.e3. PubMed ID: 32735772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CCPG1 Is a Non-canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis.
    Smith MD; Harley ME; Kemp AJ; Wills J; Lee M; Arends M; von Kriegsheim A; Behrends C; Wilkinson S
    Dev Cell; 2018 Jan; 44(2):217-232.e11. PubMed ID: 29290589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.