These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31006588)

  • 1. Flexible Backbone Assembly and Refinement of Symmetrical Homomeric Complexes.
    Roy Burman SS; Yovanno RA; Gray JJ
    Structure; 2019 Jun; 27(6):1041-1051.e8. PubMed ID: 31006588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel sampling strategies and a coarse-grained score function for docking homomers, flexible heteromers, and oligosaccharides using Rosetta in CAPRI rounds 37-45.
    Roy Burman SS; Nance ML; Jeliazkov JR; Labonte JW; Lubin JH; Biswas N; Gray JJ
    Proteins; 2020 Aug; 88(8):973-985. PubMed ID: 31742764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient flexible backbone protein-protein docking for challenging targets.
    Marze NA; Roy Burman SS; Sheffler W; Gray JJ
    Bioinformatics; 2018 Oct; 34(20):3461-3469. PubMed ID: 29718115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and minimizing CAPRI round 30 symmetrical protein complexes from CASP-11 structural models.
    El Houasli M; Maigret B; Devignes MD; Ghoorah AW; Grudinin S; Ritchie DW
    Proteins; 2017 Mar; 85(3):463-469. PubMed ID: 27701764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaches to Backbone Flexibility in Protein-Protein Docking.
    Asim A
    Methods Mol Biol; 2024; 2780():45-68. PubMed ID: 38987463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-LZerD: multiple protein docking for asymmetric complexes.
    Esquivel-Rodríguez J; Yang YD; Kihara D
    Proteins; 2012 Jul; 80(7):1818-33. PubMed ID: 22488467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape complementarity of protein-protein complexes at multiple resolutions.
    Zhang Q; Sanner M; Olson AJ
    Proteins; 2009 May; 75(2):453-67. PubMed ID: 18837463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre- and post-docking sampling of conformational changes using ClustENM and HADDOCK for protein-protein and protein-DNA systems.
    Kurkcuoglu Z; Bonvin AMJJ
    Proteins; 2020 Feb; 88(2):292-306. PubMed ID: 31441121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-protein and peptide-protein docking and refinement using ATTRACT in CAPRI.
    Schindler CE; Chauvot de Beauchêne I; de Vries SJ; Zacharias M
    Proteins; 2017 Mar; 85(3):391-398. PubMed ID: 27785830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consensus scoring for enriching near-native structures from protein-protein docking decoys.
    Liang S; Meroueh SO; Wang G; Qiu C; Zhou Y
    Proteins; 2009 May; 75(2):397-403. PubMed ID: 18831053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SymmRef: a flexible refinement method for symmetric multimers.
    Mashiach-Farkash E; Nussinov R; Wolfson HJ
    Proteins; 2011 Sep; 79(9):2607-23. PubMed ID: 21721046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein docking using case-based reasoning.
    Ghoorah AW; Devignes MD; Smaïl-Tabbone M; Ritchie DW
    Proteins; 2013 Dec; 81(12):2150-8. PubMed ID: 24123156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors.
    Raveh B; London N; Zimmerman L; Schueler-Furman O
    PLoS One; 2011 Apr; 6(4):e18934. PubMed ID: 21572516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing.
    Luo Q; Zhao L; Hu J; Jin H; Liu Z; Zhang L
    PLoS One; 2017; 12(2):e0171433. PubMed ID: 28196116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures.
    Maheshwari S; Brylinski M
    BMC Struct Biol; 2015 Nov; 15():23. PubMed ID: 26597230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using restraints in EROS-DOCK improves model quality in pairwise and multicomponent protein docking.
    Ruiz Echartea ME; Ritchie DW; Chauvot de Beauchêne I
    Proteins; 2020 Aug; 88(8):1121-1128. PubMed ID: 32506478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible docking and refinement with a coarse-grained protein model using ATTRACT.
    de Vries S; Zacharias M
    Proteins; 2013 Dec; 81(12):2167-74. PubMed ID: 23996217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35.
    Yu J; Andreani J; Ochsenbein F; Guerois R
    Proteins; 2017 Mar; 85(3):378-390. PubMed ID: 27701780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RosettaDock in CAPRI rounds 6-12.
    Wang C; Schueler-Furman O; Andre I; London N; Fleishman SJ; Bradley P; Qian B; Baker D
    Proteins; 2007 Dec; 69(4):758-63. PubMed ID: 17671979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking.
    Yan Y; Wen Z; Wang X; Huang SY
    Proteins; 2017 Mar; 85(3):497-512. PubMed ID: 28026062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.