These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Genetic features and genomic targets of human KRAB-zinc finger proteins. de Tribolet-Hardy J; Thorball CW; Forey R; Planet E; Duc J; Coudray A; Khubieh B; Offner S; Pulver C; Fellay J; Imbeault M; Turelli P; Trono D Genome Res; 2023 Aug; 33(8):1409-1423. PubMed ID: 37730438 [TBL] [Abstract][Full Text] [Related]
5. Transposable Elements, Polydactyl Proteins, and the Genesis of Human-Specific Transcription Networks. Trono D Cold Spring Harb Symp Quant Biol; 2015; 80():281-8. PubMed ID: 26763983 [TBL] [Abstract][Full Text] [Related]
6. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells. Glinsky GV Chromosome Res; 2018 Mar; 26(1-2):61-84. PubMed ID: 29335803 [TBL] [Abstract][Full Text] [Related]
7. Conserved paradoxical relationships among the evolutionary, structural and expressional features of KRAB zinc-finger proteins reveal their special functional characteristics. Shen P; Xu A; Hou Y; Wang H; Gao C; He F; Yang D BMC Mol Cell Biol; 2021 Jan; 22(1):7. PubMed ID: 33482715 [TBL] [Abstract][Full Text] [Related]
8. Functional evaluation of transposable elements as enhancers in mouse embryonic and trophoblast stem cells. Todd CD; Deniz Ö; Taylor D; Branco MR Elife; 2019 Apr; 8():. PubMed ID: 31012843 [TBL] [Abstract][Full Text] [Related]
9. The interactome of KRAB zinc finger proteins reveals the evolutionary history of their functional diversification. Helleboid PY; Heusel M; Duc J; Piot C; Thorball CW; Coluccio A; Pontis J; Imbeault M; Turelli P; Aebersold R; Trono D EMBO J; 2019 Sep; 38(18):e101220. PubMed ID: 31403225 [TBL] [Abstract][Full Text] [Related]
10. Individual retrotransposon integrants are differentially controlled by KZFP/KAP1-dependent histone methylation, DNA methylation and TET-mediated hydroxymethylation in naïve embryonic stem cells. Coluccio A; Ecco G; Duc J; Offner S; Turelli P; Trono D Epigenetics Chromatin; 2018 Feb; 11(1):7. PubMed ID: 29482634 [TBL] [Abstract][Full Text] [Related]
13. Transposable elements and their KZFP controllers are drivers of transcriptional innovation in the developing human brain. Playfoot CJ; Duc J; Sheppard S; Dind S; Coudray A; Planet E; Trono D Genome Res; 2021 Sep; 31(9):1531-1545. PubMed ID: 34400477 [TBL] [Abstract][Full Text] [Related]
14. The developmental control of transposable elements and the evolution of higher species. Friedli M; Trono D Annu Rev Cell Dev Biol; 2015; 31():429-51. PubMed ID: 26393776 [TBL] [Abstract][Full Text] [Related]
15. Take a walk on the KRAB side. Rosspopoff O; Trono D Trends Genet; 2023 Nov; 39(11):844-857. PubMed ID: 37716846 [TBL] [Abstract][Full Text] [Related]
17. Landscape of evolutionary arms races between transposable elements and KRAB-ZFP family. Kosuge M; Ito J; Hamada M Sci Rep; 2024 Oct; 14(1):23358. PubMed ID: 39375372 [TBL] [Abstract][Full Text] [Related]
18. ZFP57 regulation of transposable elements and gene expression within and beyond imprinted domains. Shi H; Strogantsev R; Takahashi N; Kazachenka A; Lorincz MC; Hemberger M; Ferguson-Smith AC Epigenetics Chromatin; 2019 Aug; 12(1):49. PubMed ID: 31399135 [TBL] [Abstract][Full Text] [Related]
19. Transposable Element Exaptation into Regulatory Regions Is Rare, Influenced by Evolutionary Age, and Subject to Pleiotropic Constraints. Simonti CN; Pavlicev M; Capra JA Mol Biol Evol; 2017 Nov; 34(11):2856-2869. PubMed ID: 28961735 [TBL] [Abstract][Full Text] [Related]