BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31006981)

  • 1. Intelligent Image De-Blurring for Imaging Flow Cytometry.
    Zhang F; Lei C; Huang CJ; Kobayashi H; Sun CW; Goda K
    Cytometry A; 2019 May; 95(5):549-554. PubMed ID: 31006981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy.
    Lei C; Kobayashi H; Wu Y; Li M; Isozaki A; Yasumoto A; Mikami H; Ito T; Nitta N; Sugimura T; Yamada M; Yatomi Y; Di Carlo D; Ozeki Y; Goda K
    Nat Protoc; 2018 Jul; 13(7):1603-1631. PubMed ID: 29976951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
    Hennig H; Rees P; Blasi T; Kamentsky L; Hung J; Dao D; Carpenter AE; Filby A
    Methods; 2017 Jan; 112():201-210. PubMed ID: 27594698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast intelligent cell phenotyping for high-throughput optofluidic time-stretch microscopy based on the XGBoost algorithm.
    Zhao W; Guo Y; Yang S; Chen M; Chen H
    J Biomed Opt; 2020 Jun; 25(6):1-12. PubMed ID: 32495539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy.
    Guo B; Lei C; Kobayashi H; Ito T; Yalikun Y; Jiang Y; Tanaka Y; Ozeki Y; Goda K
    Cytometry A; 2017 May; 91(5):494-502. PubMed ID: 28399328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical time-stretch imaging flow cytometry in the compressed domain.
    Lin S; Li R; Weng Y; Mei L; Wei C; Song C; Wei S; Yao Y; Ruan X; Zhou F; Geng Q; Wang D; Lei C
    J Biophotonics; 2023 Aug; 16(8):e202300096. PubMed ID: 37170719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent image-activated cell sorting 2.0.
    Isozaki A; Mikami H; Tezuka H; Matsumura H; Huang K; Akamine M; Hiramatsu K; Iino T; Ito T; Karakawa H; Kasai Y; Li Y; Nakagawa Y; Ohnuki S; Ota T; Qian Y; Sakuma S; Sekiya T; Shirasaki Y; Suzuki N; Tayyabi E; Wakamiya T; Xu M; Yamagishi M; Yan H; Yu Q; Yan S; Yuan D; Zhang W; Zhao Y; Arai F; Campbell RE; Danelon C; Di Carlo D; Hiraki K; Hoshino Y; Hosokawa Y; Inaba M; Nakagawa A; Ohya Y; Oikawa M; Uemura S; Ozeki Y; Sugimura T; Nitta N; Goda K
    Lab Chip; 2020 Jun; 20(13):2263-2273. PubMed ID: 32459276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning in Image Cytometry: A Review.
    Gupta A; Harrison PJ; Wieslander H; Pielawski N; Kartasalo K; Partel G; Solorzano L; Suveer A; Klemm AH; Spjuth O; Sintorn IM; Wählby C
    Cytometry A; 2019 Apr; 95(4):366-380. PubMed ID: 30565841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Cytometry: Deep learning with Real-time Inference in Cell Sorting and Flow Cytometry.
    Li Y; Mahjoubfar A; Chen CL; Niazi KR; Pei L; Jalali B
    Sci Rep; 2019 Jul; 9(1):11088. PubMed ID: 31366998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual cell imaging: A review on simulation methods employed in image cytometry.
    Ulman V; Svoboda D; Nykter M; Kozubek M; Ruusuvuori P
    Cytometry A; 2016 Dec; 89(12):1057-1072. PubMed ID: 27922735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H-EM: An algorithm for simultaneous cell diameter and intensity quantification in low-resolution imaging cytometry.
    Pardo E; González G; Tucker-Schwartz JM; Dave SR; Malpica N
    PLoS One; 2019; 14(9):e0222265. PubMed ID: 31513616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Framework for morphometric classification of cells in imaging flow cytometry.
    Gopakumar G; Jagannadh VK; Gorthi SS; Subrahmanyam GR
    J Microsc; 2016 Mar; 261(3):307-19. PubMed ID: 26469709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementing machine learning methods for imaging flow cytometry.
    Ota S; Sato I; Horisaki R
    Microscopy (Oxf); 2020 Apr; 69(2):61-68. PubMed ID: 32115658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A practical guide to intelligent image-activated cell sorting.
    Isozaki A; Mikami H; Hiramatsu K; Sakuma S; Kasai Y; Iino T; Yamano T; Yasumoto A; Oguchi Y; Suzuki N; Shirasaki Y; Endo T; Ito T; Hiraki K; Yamada M; Matsusaka S; Hayakawa T; Fukuzawa H; Yatomi Y; Arai F; Di Carlo D; Nakagawa A; Hoshino Y; Hosokawa Y; Uemura S; Sugimura T; Ozeki Y; Nitta N; Goda K
    Nat Protoc; 2019 Aug; 14(8):2370-2415. PubMed ID: 31278398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large population cell characterization using quantitative phase cytometer.
    Jin D; Sung Y; Lue N; Kim YH; So PTC; Yaqoob Z
    Cytometry A; 2017 May; 91(5):450-459. PubMed ID: 28444998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytopathological image analysis using deep-learning networks in microfluidic microscopy.
    Gopakumar G; Hari Babu K; Mishra D; Gorthi SS; Sai Subrahmanyam GR
    J Opt Soc Am A Opt Image Sci Vis; 2017 Jan; 34(1):111-121. PubMed ID: 28059233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).
    Tang AHL; Lai QTK; Chung BMF; Lee KCM; Mok ATY; Yip GK; Shum AHC; Wong KKY; Tsia KK
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28715367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning-Based Single-Cell Optical Image Studies.
    Sun J; Tárnok A; Su X
    Cytometry A; 2020 Mar; 97(3):226-240. PubMed ID: 31981309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell damage evaluation by intelligent imaging flow cytometry.
    Yao Y; He L; Mei L; Weng Y; Huang J; Wei S; Li R; Tian S; Liu P; Ruan X; Wang D; Zhou F; Lei C
    Cytometry A; 2023 Aug; 103(8):646-654. PubMed ID: 36966466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ghost cytometry.
    Ota S; Horisaki R; Kawamura Y; Ugawa M; Sato I; Hashimoto K; Kamesawa R; Setoyama K; Yamaguchi S; Fujiu K; Waki K; Noji H
    Science; 2018 Jun; 360(6394):1246-1251. PubMed ID: 29903975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.