These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 3100720)
21. Analysis of internal motions of RNase T1 complexed with a productive substrate involving 15N NMR relaxation measurements. Yoshida Y; Tanaka M; Ohkuri T; Tanaka Y; Imoto T; Ueda T J Biochem; 2006 Jul; 140(1):43-8. PubMed ID: 16877767 [TBL] [Abstract][Full Text] [Related]
22. Fluorescence lifetime quenching and anisotropy studies of ribonuclease T1. James DR; Demmer DR; Steer RP; Verrall RE Biochemistry; 1985 Sep; 24(20):5517-26. PubMed ID: 3935161 [TBL] [Abstract][Full Text] [Related]
23. Nuclear magnetic resonance study on the microenvironments of histidine residues of ribonuclease T1 and carboxymethylated ribonuclease T1. Inagaki F; Kawano Y; Shimada I; Takahashi K; Miyazawa T J Biochem; 1981 Apr; 89(4):1185-95. PubMed ID: 6788755 [TBL] [Abstract][Full Text] [Related]
24. NMR studies on interactions of ribonuclease Sa with Guo-3'-P. Both V; Zachar J; Zelinka J Gen Physiol Biophys; 1983 Aug; 2(4):269-78. PubMed ID: 6432629 [TBL] [Abstract][Full Text] [Related]
25. Specificity of guanylic RNases to polynucleotide substrates. Both V; Moiseyev GP; Sevcik J Biochem Biophys Res Commun; 1991 Jun; 177(2):630-5. PubMed ID: 1904722 [TBL] [Abstract][Full Text] [Related]
26. Molecular conformation and function of erabutoxins as studied by nuclear magnetic resonance. Inagaki F; Tamiya N; Miyazawa T Eur J Biochem; 1980 Aug; 109(1):129-38. PubMed ID: 6773770 [TBL] [Abstract][Full Text] [Related]
27. Modification of Glu 58, an amino acid of the active center of ribonuclease T1, to Gln and Asp. Nishikawa S; Morioka H; Fuchimura K; Tanaka T; Uesugi S; Ohtsuka E; Ikehara M Biochem Biophys Res Commun; 1986 Jul; 138(2):789-94. PubMed ID: 2874806 [TBL] [Abstract][Full Text] [Related]
28. Molecular dynamics simulations of ribonuclease T1: analysis of the effect of solvent on the structure, fluctuations, and active site of the free enzyme. MacKerell AD; Nilsson L; Rigler R; Saenger W Biochemistry; 1988 Jun; 27(12):4547-56. PubMed ID: 3139027 [TBL] [Abstract][Full Text] [Related]
29. Increase in nucleolytic activity of ribonuclease T1 by substitution of tryptophan 45 for tyrosine 45. Nishikawa S; Morioka H; Kimura T; Ueda Y; Tanaka T; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M Eur J Biochem; 1988 Apr; 173(2):389-94. PubMed ID: 3129293 [TBL] [Abstract][Full Text] [Related]
30. Crystal structure of RNase T1 with 3'-guanylic acid and guanosine. Zegers I; Haikal AF; Palmer R; Wyns L J Biol Chem; 1994 Jan; 269(1):127-33. PubMed ID: 8276784 [TBL] [Abstract][Full Text] [Related]
31. Ribonuclease T1 is stabilized by cation and anion binding. Pace CN; Grimsley GR Biochemistry; 1988 May; 27(9):3242-6. PubMed ID: 3134046 [TBL] [Abstract][Full Text] [Related]
32. Fluorescence titrations of residue 59 and tyrosine in Kyn 59-RNase T1 and NFK 59-RNase T1. Fukunaga Y; Sakiyama F J Biochem; 1982 Jul; 92(1):155-61. PubMed ID: 6811572 [TBL] [Abstract][Full Text] [Related]
33. Thermal stabilization of ribonuclease T1 by carboxymethylation at Glu-58 as revealed by 1H nuclear magnetic resonance spectroscopy. Kojima M; Mizukoshi T; Miyano H; Suzuki E; Tanokura M; Takahashi K FEBS Lett; 1994 Sep; 351(3):389-92. PubMed ID: 7915996 [TBL] [Abstract][Full Text] [Related]
34. [Structures and functions of ribonucleases]. Irie M Yakugaku Zasshi; 1997 Sep; 117(9):561-82. PubMed ID: 9357326 [TBL] [Abstract][Full Text] [Related]
35. Phosphorescence and optically detected magnetic resonance measurements of the 2'AMP and 2'GMP complexes of a mutant ribonuclease T1 (Y45W) in solution: correlation with X-ray crystal structures. Lam WC; Maki AH; Itoh T; Hakoshima T Biochemistry; 1992 Jul; 31(29):6756-60. PubMed ID: 1322171 [TBL] [Abstract][Full Text] [Related]
36. Crystallographic study of mechanism of ribonuclease T1-catalysed specific RNA hydrolysis. Heinemann U; Saenger W J Biomol Struct Dyn; 1983 Oct; 1(2):523-38. PubMed ID: 6086061 [TBL] [Abstract][Full Text] [Related]
37. Structural analysis of an RNase T1 variant with an altered guanine binding segment. Höschler K; Hoier H; Hubner B; Saenger W; Orth P; Hahn U J Mol Biol; 1999 Dec; 294(5):1231-8. PubMed ID: 10600381 [TBL] [Abstract][Full Text] [Related]
38. Crystal structures of ribonuclease F1 of Fusarium moniliforme in its free form and in complex with 2'GMP. Vassylyev DG; Katayanagi K; Ishikawa K; Tsujimoto-Hirano M; Danno M; Pähler A; Matsumoto O; Matsushima M; Yoshida H; Morikawa K J Mol Biol; 1993 Apr; 230(3):979-96. PubMed ID: 8386773 [TBL] [Abstract][Full Text] [Related]
39. The specific guanine binding site of the ribonuclease T1 family enzymes and of G-proteins is modeled in the cocrystal formed by 7-methylguanosine-5'-phosphate and phenylalanine. Saenger W; Flogel R; Zielenkiewicz P; Inoue M; Ishida T J Biochem; 1989 Aug; 106(2):189-91. PubMed ID: 2509438 [TBL] [Abstract][Full Text] [Related]