These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31007381)

  • 1. Remobilization of Old Permafrost Carbon to Chukchi Sea Sediments During the End of the Last Deglaciation.
    Martens J; Wild B; Pearce C; Tesi T; Andersson A; Bröder L; O'Regan M; Jakobsson M; Sköld M; Gemery L; Cronin TM; Semiletov I; Dudarev OV; Gustafsson Ö
    Global Biogeochem Cycles; 2019 Jan; 33(1):2-14. PubMed ID: 31007381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remobilization of dormant carbon from Siberian-Arctic permafrost during three past warming events.
    Martens J; Wild B; Muschitiello F; O'Regan M; Jakobsson M; Semiletov I; Dudarev OV; Gustafsson Ö
    Sci Adv; 2020 Oct; 6(42):. PubMed ID: 33067229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch.
    Anthony KM; Zimov SA; Grosse G; Jones MC; Anthony PM; Chapin FS; Finlay JC; Mack MC; Davydov S; Frenzel P; Frolking S
    Nature; 2014 Jul; 511(7510):452-6. PubMed ID: 25043014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deglacial release of petrogenic and permafrost carbon from the Canadian Arctic impacting the carbon cycle.
    Wu J; Mollenhauer G; Stein R; Köhler P; Hefter J; Fahl K; Grotheer H; Wei B; Nam SI
    Nat Commun; 2022 Nov; 13(1):7172. PubMed ID: 36418299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Massive remobilization of permafrost carbon during post-glacial warming.
    Tesi T; Muschitiello F; Smittenberg RH; Jakobsson M; Vonk JE; Hill P; Andersson A; Kirchner N; Noormets R; Dudarev O; Semiletov I; Gustafsson Ö
    Nat Commun; 2016 Nov; 7():13653. PubMed ID: 27897191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia.
    Knoblauch C; Beer C; Sosnin A; Wagner D; Pfeiffer EM
    Glob Chang Biol; 2013 Apr; 19(4):1160-72. PubMed ID: 23504893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particulate Organic Matter Dynamics in a Permafrost Headwater Stream and the Kolyma River Mainstem.
    Bröder L; Davydova A; Davydov S; Zimov N; Haghipour N; Eglinton TI; Vonk JE
    J Geophys Res Biogeosci; 2020 Feb; 125(2):e2019JG005511. PubMed ID: 32714717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate.
    Kennedy M; Mrofka D; von der Borch C
    Nature; 2008 May; 453(7195):642-5. PubMed ID: 18509441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greenhouse gas production and lipid biomarker distribution in Yedoma and Alas thermokarst lake sediments in Eastern Siberia.
    Jongejans LL; Liebner S; Knoblauch C; Mangelsdorf K; Ulrich M; Grosse G; Tanski G; Fedorov AN; Konstantinov PY; Windirsch T; Wiedmann J; Strauss J
    Glob Chang Biol; 2021 Jun; 27(12):2822-2839. PubMed ID: 33774862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation.
    Walter KM; Edwards ME; Grosse G; Zimov SA; Chapin FS
    Science; 2007 Oct; 318(5850):633-6. PubMed ID: 17962561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea.
    Koch K; Knoblauch C; Wagner D
    Environ Microbiol; 2009 Mar; 11(3):657-68. PubMed ID: 19278451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost.
    Winterfeld M; Mollenhauer G; Dummann W; Köhler P; Lembke-Jene L; Meyer VD; Hefter J; McIntyre C; Wacker L; Kokfelt U; Tiedemann R
    Nat Commun; 2018 Sep; 9(1):3666. PubMed ID: 30201999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia.
    Vonk JE; Sánchez-García L; van Dongen BE; Alling V; Kosmach D; Charkin A; Semiletov IP; Dudarev OV; Shakhova N; Roos P; Eglinton TI; Andersson A; Gustafsson O
    Nature; 2012 Sep; 489(7414):137-40. PubMed ID: 22932271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vegetation and Climate Change during the Last Deglaciation in the Great Khingan Mountain, Northeastern China.
    Wu J; Liu Q; Wang L; Chu GQ; Liu JQ
    PLoS One; 2016; 11(1):e0146261. PubMed ID: 26730966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Old carbon reservoirs were not important in the deglacial methane budget.
    Dyonisius MN; Petrenko VV; Smith AM; Hua Q; Yang B; Schmitt J; Beck J; Seth B; Bock M; Hmiel B; Vimont I; Menking JA; Shackleton SA; Baggenstos D; Bauska TK; Rhodes RH; Sperlich P; Beaudette R; Harth C; Kalk M; Brook EJ; Fischer H; Severinghaus JP; Weiss RF
    Science; 2020 Feb; 367(6480):907-910. PubMed ID: 32079770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic matter composition and greenhouse gas production of thawing subsea permafrost in the Laptev Sea.
    Wild B; Shakhova N; Dudarev O; Ruban A; Kosmach D; Tumskoy V; Tesi T; Grimm H; Nybom I; Matsubara F; Alexanderson H; Jakobsson M; Mazurov A; Semiletov I; Gustafsson Ö
    Nat Commun; 2022 Aug; 13(1):5057. PubMed ID: 36030269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation.
    Bauska TK; Baggenstos D; Brook EJ; Mix AC; Marcott SA; Petrenko VV; Schaefer H; Severinghaus JP; Lee JE
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3465-70. PubMed ID: 26976561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Younger Dryas cooling and the Greenland climate response to CO2.
    Liu Z; Carlson AE; He F; Brady EC; Otto-Bliesner BL; Briegleb BP; Wehrenberg M; Clark PU; Wu S; Cheng J; Zhang J; Noone D; Zhu J
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11101-4. PubMed ID: 22733733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming.
    Pegoraro EF; Mauritz ME; Ogle K; Ebert CH; Schuur EAG
    Glob Chang Biol; 2021 Mar; 27(6):1293-1308. PubMed ID: 33305441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources and burial fluxes of sedimentary organic carbon in the northern Bering Sea and the northern Chukchi Sea in response to global warming.
    Wang K; Zhang H; Han X; Qiu W
    Sci Total Environ; 2019 Aug; 679():97-105. PubMed ID: 31082605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.