BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31007578)

  • 1. Cobalt(II) and (I) Complexes of Diphosphine-Ketone Ligands: Catalytic Activity in Hydrosilylation Reactions.
    Verhoeven DGA; Kwakernaak J; van Wiggen MAC; Lutz M; Moret ME
    Eur J Inorg Chem; 2019 Feb; 2019(5):660-667. PubMed ID: 31007578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of silylene ligands on the performance of carbonyl hydrosilylation catalyzed by cobalt phosphine complexes.
    Fan Q; Du X; Yang W; Li Q; Huang W; Sun H; Hinz A; Li X
    Dalton Trans; 2023 May; 52(20):6712-6721. PubMed ID: 37129049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Markovnikov Hydrosilylation of Alkynes with Tertiary Silanes Catalyzed by Dinuclear Cobalt Carbonyl Complexes with NHC Ligation.
    Wang D; Lai Y; Wang P; Leng X; Xiao J; Deng L
    J Am Chem Soc; 2021 Aug; 143(32):12847-12856. PubMed ID: 34347477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions.
    Zhang G; Vasudevan KV; Scott BL; Hanson SK
    J Am Chem Soc; 2013 Jun; 135(23):8668-81. PubMed ID: 23713752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control over Selectivity in Alkene Hydrosilylation Catalyzed by Cobalt(III) Hydride Complexes.
    Yang H; Hinz A; Fan Q; Xie S; Qi X; Huang W; Li Q; Sun H; Li X
    Inorg Chem; 2022 Dec; 61(49):19710-19725. PubMed ID: 36455154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese Alkyl Carbonyl Complexes: From Iconic Stoichiometric Textbook Reactions to Catalytic Applications.
    Weber S; Kirchner K
    Acc Chem Res; 2022 Sep; 55(18):2740-2751. PubMed ID: 36074912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic Properties of [PSiP] Pincer Cobalt(II) Chlorides Supported by Trimethylphosphine for Alkene Hydrosilylation Reactions.
    Zhang M; Dong Y; Li Q; Sun H; Li X
    Inorg Chem; 2024 May; 63(19):8807-8815. PubMed ID: 38688019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickamine and Analogous Nickel Pincer Catalysts for Cross-Coupling of Alkyl Halides and Hydrosilylation of Alkenes.
    Shi R; Zhang Z; Hu X
    Acc Chem Res; 2019 May; 52(5):1471-1483. PubMed ID: 31008581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper, silver, and gold complexes in hydrosilylation reactions.
    Díez-González S; Nolan SP
    Acc Chem Res; 2008 Feb; 41(2):349-58. PubMed ID: 18281951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cobalt Complexes Supported by Phosphinoquinoline Ligands for the Catalyzed Hydrosilylation of Carbonyl Compounds.
    Schiltz P; Casaretto N; Auffrant A; Gosmini C
    Chemistry; 2022 Jun; 28(32):e202200437. PubMed ID: 35404531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Earth-Abundant Transition Metal Catalysts for Alkene Hydrosilylation and Hydroboration: Opportunities and Assessments.
    Obligacion JV; Chirik PJ
    Nat Rev Chem; 2018 May; 2(5):15-34. PubMed ID: 30740530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Precious-Metal Catalytic Systems Involving Iron or Cobalt Carboxylates and Alkyl Isocyanides for Hydrosilylation of Alkenes with Hydrosiloxanes.
    Noda D; Tahara A; Sunada Y; Nagashima H
    J Am Chem Soc; 2016 Mar; 138(8):2480-3. PubMed ID: 26760915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrosilylation of Ketones Catalyzed by Iron Iminobipyridine Complexes and Accelerated by Lewis Bases.
    Kobayashi K; Izumori Y; Taguchi D; Nakazawa H
    Chempluschem; 2019 Aug; 84(8):1094-1102. PubMed ID: 31943952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C(sp
    Roque JB; Pabst TP; Chirik PJ
    ACS Catal; 2022 Aug; 12(15):8877-8885. PubMed ID: 36032506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a Highly Active Catalytic System Based on Cobalt Nanoparticles for Terminal and Internal Alkene Hydrosilylation.
    Jakoobi M; Dardun V; Veyre L; Meille V; Camp C; Thieuleux C
    J Org Chem; 2020 Sep; 85(18):11732-11740. PubMed ID: 32844646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinum(II) Di-ω-alkenyl Complexes as "Slow-Release" Precatalysts for Heat-Triggered Olefin Hydrosilylation.
    Liu S; Girolami GS
    J Am Chem Soc; 2021 Oct; 143(42):17492-17509. PubMed ID: 34644053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the Iron(II)-Catalyzed Hydrosilylation of Ketones: Activation of Iron Carboxylate Precatalysts and Reaction Pathways of the Active Catalyst.
    Bleith T; Gade LH
    J Am Chem Soc; 2016 Apr; 138(14):4972-83. PubMed ID: 27013140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Syntheses, characterization and study of the use of cobalt (II) Schiff-base complexes as catalysts for the oxidation of styrene by molecular oxygen.
    Khandar AA; Nejati K; Rezvani Z
    Molecules; 2005 Jan; 10(1):302-11. PubMed ID: 18007300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations.
    Liu W; Sahoo B; Junge K; Beller M
    Acc Chem Res; 2018 Aug; 51(8):1858-1869. PubMed ID: 30091891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.