These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 31007638)

  • 1. On the security of semi-device-independent QKD protocols.
    Chaturvedi A; Ray M; Veynar R; Pawłowski M
    Quantum Inf Process; 2018; 17(6):131. PubMed ID: 31007638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counterfactual quantum key distribution with untrusted detectors.
    Lin YQ; Wang M; Yang XQ; Liu HW
    Heliyon; 2023 Feb; 9(2):e13719. PubMed ID: 36879753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-key bound for semi-device-independent quantum key distribution.
    Zhou C; Xu P; Bao WS; Wang Y; Zhang Y; Jiang MS; Li HW
    Opt Express; 2017 Jul; 25(15):16971-16980. PubMed ID: 28789196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced BB84 quantum cryptography protocol for secure communication in wireless body sensor networks for medical applications.
    V AD; V K
    Pers Ubiquitous Comput; 2023; 27(3):875-885. PubMed ID: 33758585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reference-frame-independent, measurement-device-independent quantum key distribution using fewer quantum states.
    Lee D; Hong S; Cho YW; Lim HT; Han SW; Jung H; Moon S; Lee KJ; Kim YS
    Opt Lett; 2020 May; 45(9):2624-2627. PubMed ID: 32356832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources.
    Gu J; Cao XY; Fu Y; He ZW; Yin ZJ; Yin HL; Chen ZB
    Sci Bull (Beijing); 2022 Nov; 67(21):2167-2175. PubMed ID: 36545992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the Security of the BB84 Quantum Key Distribution Protocol against Detector-Blinding Attacks via the Use of an Active Quantum Entropy Source in the Receiving Station.
    Stipčević M
    Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Security of the Decoy-State BB84 Protocol with Imperfect State Preparation.
    Reutov A; Tayduganov A; Mayboroda V; Fat'yanov O
    Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Security of subcarrier wave quantum key distribution against the collective beam-splitting attack.
    Miroshnichenko GP; Kozubov AV; Gaidash AA; Gleim AV; Horoshko DB
    Opt Express; 2018 Apr; 26(9):11292-11308. PubMed ID: 29716053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel Device-Independent Quantum Key Distribution.
    Jain R; Miller CA; Shi Y
    IEEE Trans Inf Theory; 2020; 66(9):. PubMed ID: 33654327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol.
    Mizutani A; Tamaki K; Ikuta R; Yamamoto T; Imoto N
    Sci Rep; 2014 Jun; 4():5236. PubMed ID: 24913431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keyless Semi-Quantum Point-to-point Communication Protocol with Low Resource Requirements.
    Lu H; Barbeau M; Nayak A
    Sci Rep; 2019 Jan; 9(1):64. PubMed ID: 30635601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weak randomness impacts the security of reference-frame-independent quantum key distribution.
    Zhang CM; Wang WB; Li HW; Wang Q
    Opt Lett; 2019 Mar; 44(5):1226-1229. PubMed ID: 30821754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secrecy in Prepare-and-Measure Clauser-Horne-Shimony-Holt Tests with a Qubit Bound.
    Woodhead E; Pironio S
    Phys Rev Lett; 2015 Oct; 115(15):150501. PubMed ID: 26550712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Security of quantum key distribution from generalised entropy accumulation.
    Metger T; Renner R
    Nat Commun; 2023 Aug; 14(1):5272. PubMed ID: 37644010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum key distribution with hacking countermeasures and long term field trial.
    Dixon AR; Dynes JF; Lucamarini M; Fröhlich B; Sharpe AW; Plews A; Tam W; Yuan ZL; Tanizawa Y; Sato H; Kawamura S; Fujiwara M; Sasaki M; Shields AJ
    Sci Rep; 2017 May; 7(1):1978. PubMed ID: 28512308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum key distribution with prepare-and-measure Bell test.
    Tan YG
    Sci Rep; 2016 Oct; 6():35032. PubMed ID: 27733771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hacking single-photon avalanche detectors in quantum key distribution via pulse illumination.
    Wu Z; Huang A; Chen H; Sun SH; Ding J; Qiang X; Fu X; Xu P; Wu J
    Opt Express; 2020 Aug; 28(17):25574-25590. PubMed ID: 32907074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Satellite Quantum Communications When Man-in-the-Middle Attacks Are Excluded.
    Vergoossen T; Bedington R; Grieve JA; Ling A
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental composable security decoy-state quantum key distribution using time-phase encoding.
    Yin HL; Liu P; Dai WW; Ci ZH; Gu J; Gao T; Wang QW; Shen ZY
    Opt Express; 2020 Sep; 28(20):29479-29485. PubMed ID: 33114847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.