These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31007759)

  • 1. Development of QSAR machine learning-based models to forecast the effect of substances on malignant melanoma cells.
    Ancuceanu R; Dinu M; Neaga I; Laszlo FG; Boda D
    Oncol Lett; 2019 May; 17(5):4188-4196. PubMed ID: 31007759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial QSAR of ambergris fragrance compounds.
    Kovatcheva A; Golbraikh A; Oloff S; Xiao YD; Zheng W; Wolschann P; Buchbauer G; Tropsha A
    J Chem Inf Comput Sci; 2004; 44(2):582-95. PubMed ID: 15032539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR Models for Active Substances against
    Bugeac CA; Ancuceanu R; Dinu M
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33808845
    [No Abstract]   [Full Text] [Related]  

  • 4. Development and rigorous validation of antimalarial predictive models using machine learning approaches.
    Danishuddin ; Madhukar G; Malik MZ; Subbarao N
    SAR QSAR Environ Res; 2019 Aug; 30(8):543-560. PubMed ID: 31328578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Silico Prediction of O⁶-Methylguanine-DNA Methyltransferase Inhibitory Potency of Base Analogs with QSAR and Machine Learning Methods.
    Sun G; Fan T; Sun X; Hao Y; Cui X; Zhao L; Ren T; Zhou Y; Zhong R; Peng Y
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30404161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Informing the Human Plasma Protein Binding of Environmental Chemicals by Machine Learning in the Pharmaceutical Space: Applicability Domain and Limits of Predictability.
    Ingle BL; Veber BC; Nichols JW; Tornero-Velez R
    J Chem Inf Model; 2016 Nov; 56(11):2243-2252. PubMed ID: 27684444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial QSAR modeling of P-glycoprotein substrates.
    de Cerqueira Lima P; Golbraikh A; Oloff S; Xiao Y; Tropsha A
    J Chem Inf Model; 2006; 46(3):1245-54. PubMed ID: 16711744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open-source QSAR models for pKa prediction using multiple machine learning approaches.
    Mansouri K; Cariello NF; Korotcov A; Tkachenko V; Grulke CM; Sprankle CS; Allen D; Casey WM; Kleinstreuer NC; Williams AJ
    J Cheminform; 2019 Sep; 11(1):60. PubMed ID: 33430972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches.
    Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T
    Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.
    Fang X; Bagui S; Bagui S
    Comput Biol Chem; 2017 Aug; 69():110-119. PubMed ID: 28601761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contemporary QSAR classifiers compared.
    Bruce CL; Melville JL; Pickett SD; Hirst JD
    J Chem Inf Model; 2007; 47(1):219-27. PubMed ID: 17238267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods.
    Hao Y; Sun G; Fan T; Sun X; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y
    Ecotoxicol Environ Saf; 2019 Dec; 186():109822. PubMed ID: 31634658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity.
    Sedykh A; Zhu H; Tang H; Zhang L; Richard A; Rusyn I; Tropsha A
    Environ Health Perspect; 2011 Mar; 119(3):364-70. PubMed ID: 20980217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSAR modeling using chirality descriptors derived from molecular topology.
    Golbraikh A; Tropsha A
    J Chem Inf Comput Sci; 2003; 43(1):144-54. PubMed ID: 12546547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive toxicology modeling: protocols for exploring hERG classification and Tetrahymena pyriformis end point predictions.
    Su BH; Tu YS; Esposito EX; Tseng YJ
    J Chem Inf Model; 2012 Jun; 52(6):1660-73. PubMed ID: 22642982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking the Predictive Power of Ligand Efficiency Indices in QSAR.
    Cortes-Ciriano I
    J Chem Inf Model; 2016 Aug; 56(8):1576-87. PubMed ID: 27399907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated classification of tropical shrub species: a hybrid of leaf shape and machine learning approach.
    Murat M; Chang SW; Abu A; Yap HJ; Yong KT
    PeerJ; 2017; 5():e3792. PubMed ID: 28924506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative QSAR- and fragments distribution analysis of drugs, druglikes, metabolic substances, and antimicrobial compounds.
    Karakoc E; Sahinalp SC; Cherkasov A
    J Chem Inf Model; 2006; 46(5):2167-82. PubMed ID: 16995747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison between 2D and 3D descriptors in QSAR modeling based on bio-active conformations.
    Bahia MS; Kaspi O; Touitou M; Binayev I; Dhail S; Spiegel J; Khazanov N; Yosipof A; Senderowitz H
    Mol Inform; 2023 Apr; 42(4):e2200186. PubMed ID: 36617991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.