These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31007837)

  • 1. A Monolayer Partitioning Scheme for Droplets of Surfactant Solutions.
    Malila J; Prisle NL
    J Adv Model Earth Syst; 2018 Dec; 10(12):3233-3251. PubMed ID: 31007837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The surface tension of surfactant-containing, finite volume droplets.
    Bzdek BR; Reid JP; Malila J; Prisle NL
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8335-8343. PubMed ID: 32238561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of surface tension time-evolution for CCN activation of a complex organic surfactant.
    Lin JJ; Kristensen TB; Calderón SM; Malila J; Prisle NL
    Environ Sci Process Impacts; 2020 Feb; 22(2):271-284. PubMed ID: 31912080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloud droplet activation of organic-salt mixtures predicted from two model treatments of the droplet surface.
    Lin JJ; Malila J; Prisle NL
    Environ Sci Process Impacts; 2018 Nov; 20(11):1611-1629. PubMed ID: 30398264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface organic monolayers control the hygroscopic growth of submicrometer particles at high relative humidity.
    Ruehl CR; Wilson KR
    J Phys Chem A; 2014 Jun; 118(22):3952-66. PubMed ID: 24866291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactants and cloud droplet activation: A systematic extension of Köhler theory based on analysis of droplet stability.
    McGraw R; Wang J
    J Chem Phys; 2021 Jan; 154(2):024707. PubMed ID: 33445916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Area-to-Volume Ratio Determines Surface Tensions in Microscopic, Surfactant-Containing Droplets.
    Bain A; Ghosh K; Prisle NL; Bzdek BR
    ACS Cent Sci; 2023 Nov; 9(11):2076-2083. PubMed ID: 38033804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfaces of Atmospheric Droplet Models Probed with Synchrotron XPS on a Liquid Microjet.
    Prisle NL
    Acc Chem Res; 2024 Jan; 57(2):177-187. PubMed ID: 38156821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Self-Organization in Surfactant Atmospheric Aerosol Proxies.
    Milsom A; Squires AM; Ward AD; Pfrang C
    Acc Chem Res; 2023 Oct; 56(19):2555-2568. PubMed ID: 37688543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mulitphase Atmospheric Chemistry in Liquid Water: Impacts and Controllability of Organic Aerosol.
    Carlton AG; Christiansen AE; Flesch MM; Hennigan CJ; Sareen N
    Acc Chem Res; 2020 Sep; 53(9):1715-1723. PubMed ID: 32803954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and evolution of aqueous organic aerosols via concurrent condensation and chemical aging.
    Djikaev YS; Ruckenstein E
    Adv Colloid Interface Sci; 2019 Mar; 265():45-67. PubMed ID: 30711797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface tension prevails over solute effect in organic-influenced cloud droplet activation.
    Ovadnevaite J; Zuend A; Laaksonen A; Sanchez KJ; Roberts G; Ceburnis D; Decesari S; Rinaldi M; Hodas N; Facchini MC; Seinfeld JH; O' Dowd C
    Nature; 2017 Jun; 546(7660):637-641. PubMed ID: 28636594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the closure conjectures for the Gibbsian approximation model of a binary droplet.
    Djikaev YS; Napari I; Laaksonen A
    J Chem Phys; 2004 May; 120(20):9752-62. PubMed ID: 15267991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dynamic surface tension of atmospheric aerosol surfactants reveals new aspects of cloud activation.
    Nozière B; Baduel C; Jaffrezo JL
    Nat Commun; 2014 Feb; 5():3335. PubMed ID: 24566451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant Partitioning Dynamics in Freshly Generated Aerosol Droplets.
    Bain A; Lalemi L; Croll Dawes N; Miles REH; Prophet AM; Wilson KR; Bzdek BR
    J Am Chem Soc; 2024 Jun; 146(23):16028-16038. PubMed ID: 38822805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salting out, non-ideality and synergism enhance surfactant efficiency in atmospheric aerosols.
    El Haber M; Ferronato C; Giroir-Fendler A; Fine L; Nozière B
    Sci Rep; 2023 Nov; 13(1):20672. PubMed ID: 38001267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.
    Djikaev YS; Ruckenstein E
    J Phys Chem A; 2018 May; 122(17):4322-4337. PubMed ID: 29668281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An interfacial mechanism for cloud droplet formation on organic aerosols.
    Ruehl CR; Davies JF; Wilson KR
    Science; 2016 Mar; 351(6280):1447-50. PubMed ID: 27013731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloud Activation Potentials for Atmospheric α-Pinene and β-Caryophyllene Ozonolysis Products.
    Gray Bé A; Upshur MA; Liu P; Martin ST; Geiger FM; Thomson RJ
    ACS Cent Sci; 2017 Jul; 3(7):715-725. PubMed ID: 28776013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.