BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 31008015)

  • 1. Direct Electron Transfer of Enzymes Facilitated by Cytochromes.
    Ma S; Ludwig R
    ChemElectroChem; 2019 Feb; 6(4):958-975. PubMed ID: 31008015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of Uniform Monolayer- and Orientation-Tunable Enzyme Electrode by a Synthetic Glucose Dehydrogenase without Electron-Transfer Subunit via Optimized Site-Specific Gold-Binding Peptide Capable of Direct Electron Transfer.
    Lee YS; Baek S; Lee H; Reginald SS; Kim Y; Kang H; Choi IG; Chang IS
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28615-28626. PubMed ID: 30067023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cytochrome b-glucose dehydrogenase chimeric enzyme capable of direct electron transfer.
    Viehauser MC; Breslmayr E; Scheiblbrandner S; Schachinger F; Ma S; Ludwig R
    Biosens Bioelectron; 2022 Jan; 196():113704. PubMed ID: 34695687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Electron Transfer-Type Oxidoreductases for Biomedical Applications.
    Sowa K; Okuda-Shimazaki J; Fukawa E; Sode K
    Annu Rev Biomed Eng; 2024 Feb; ():. PubMed ID: 38424090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amperometric Biosensors Based on Direct Electron Transfer Enzymes.
    Schachinger F; Chang H; Scheiblbrandner S; Ludwig R
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specifically wired and oriented glucose dehydrogenase fused to a minimal cytochrome with high glucose sensing sensitivity.
    Algov I; Feiertag A; Alfonta L
    Biosens Bioelectron; 2021 May; 180():113117. PubMed ID: 33677358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanistic and electrochemical study of the interaction between dimethyl sulfide dehydrogenase and its electron transfer partner cytochrome c2.
    Creevey NL; McEwan AG; Bernhardt PV
    J Biol Inorg Chem; 2008 Nov; 13(8):1231-8. PubMed ID: 18607648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Versatile Method to Construct Direct Electron Transfer-Type Enzyme Complexes Employing SpyCatcher/SpyTag System.
    Yanase T; Okuda-Shimazaki J; Asano R; Ikebukuro K; Sode K; Tsugawa W
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying direct electron transfer by site-directed immobilization of cellobiose dehydrogenase.
    Meneghello M; Al-Lolage FA; Ma S; Ludwig R; Bartlett PN
    ChemElectroChem; 2019 Feb; 6(3):700-713. PubMed ID: 31700765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase.
    Yamashita Y; Suzuki N; Hirose N; Kojima K; Tsugawa W; Sode K
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interdomain Linker of the Bioelecrocatalyst Cellobiose Dehydrogenase Governs the Electron Transfer.
    Zhang L; Laurent CVFP; Schwaiger L; Wang L; Ma S; Ludwig R
    ACS Catal; 2023 Jun; 13(12):8195-8205. PubMed ID: 37342832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes.
    Okuda-Shimazaki J; Yoshida H; Sode K
    Bioelectrochemistry; 2020 Apr; 132():107414. PubMed ID: 31838457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface engineering of cellobiose dehydrogenase improves interdomain electron transfer.
    Reichhart TMB; Scheiblbrandner S; Sygmund C; Harreither W; Schenkenfelder J; Schulz C; Felice AKG; Gorton L; Ludwig R
    Protein Sci; 2023 Aug; 32(8):e4702. PubMed ID: 37312580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Elegant Four-Helical Fold in NOX and STEAP Enzymes Facilitates Electron Transport across Biomembranes-Similar Vehicle, Different Destination.
    Oosterheert W; Reis J; Gros P; Mattevi A
    Acc Chem Res; 2020 Sep; 53(9):1969-1980. PubMed ID: 32815713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavocytochrome b2: kinetic studies by absorbance and electron-paramagnetic-resonance spectroscopy of electron distribution among prosthetic groups.
    Capeillère-Blandin C; Bray RC; Iwatsubo M; Labeyrie F
    Eur J Biochem; 1975 Jun; 54(2):549-66. PubMed ID: 170093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal Structure of the Catalytic and Cytochrome
    Takeda K; Ishida T; Yoshida M; Samejima M; Ohno H; Igarashi K; Nakamura N
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of a novel DET type FAD glucose dehydrogenase harboring Escherichia coli derived cytochrome b
    Yanase T; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Sode K
    Biochem Biophys Res Commun; 2020 Sep; 530(1):82-86. PubMed ID: 32828319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of the interdomain hinge in intramolecular electron transfer in flavocytochrome b2.
    White P; Manson FD; Brunt CE; Chapman SK; Reid GA
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):89-94. PubMed ID: 8385941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells.
    Bollella P; Gorton L; Antiochia R
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29695133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellobiose dehydrogenase: Bioelectrochemical insights and applications.
    Scheiblbrandner S; Ludwig R
    Bioelectrochemistry; 2020 Feb; 131():107345. PubMed ID: 31494387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.