These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 31008538)

  • 21. FtsH protease-mediated regulation of various cellular functions.
    Okuno T; Ogura T
    Subcell Biochem; 2013; 66():53-69. PubMed ID: 23479437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein knots provide mechano-resilience to an AAA+ protease-mediated proteolysis with profound ATP energy expenses.
    Sriramoju MK; Chen Y; Hsu SD
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140330. PubMed ID: 31756432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial cell division protein FtsZ is stable against degradation by AAA family protease FtsH in Escherichia coli cells.
    Srinivasan R; Ajitkumar P
    J Basic Microbiol; 2007 Jun; 47(3):251-9. PubMed ID: 17518418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstitution of membrane proteolysis by FtsH.
    Akiyama Y; Ito K
    J Biol Chem; 2003 May; 278(20):18146-53. PubMed ID: 12642574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconstitution and functional characterization of the FtsH protease in lipid nanodiscs.
    Prabudiansyah I; van der Valk R; Aubin-Tam ME
    Biochim Biophys Acta Biomembr; 2021 Feb; 1863(2):183526. PubMed ID: 33278347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resolving individual steps in the operation of ATP-dependent proteolytic molecular machines: from conformational changes to substrate translocation and processivity.
    Licht S; Lee I
    Biochemistry; 2008 Mar; 47(12):3595-605. PubMed ID: 18311925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH.
    Karata K; Inagawa T; Wilkinson AJ; Tatsuta T; Ogura T
    J Biol Chem; 1999 Sep; 274(37):26225-32. PubMed ID: 10473576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryo-EM structure of transmembrane AAA+ protease FtsH in the ADP state.
    Liu W; Schoonen M; Wang T; McSweeney S; Liu Q
    Commun Biol; 2022 Mar; 5(1):257. PubMed ID: 35322207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Marching to the beat of the ring: polypeptide translocation by AAA+ proteases.
    Nyquist K; Martin A
    Trends Biochem Sci; 2014 Feb; 39(2):53-60. PubMed ID: 24316303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of cross-links between FtsH, YidC, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins.
    van Bloois E; Dekker HL; Fröderberg L; Houben EN; Urbanus ML; de Koster CG; de Gier JW; Luirink J
    FEBS Lett; 2008 Apr; 582(10):1419-24. PubMed ID: 18387365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein unfolding and degradation by the AAA+ Lon protease.
    Gur E; Vishkautzan M; Sauer RT
    Protein Sci; 2012 Feb; 21(2):268-78. PubMed ID: 22162032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Slippery substrates impair ATP-dependent protease function by slowing unfolding.
    Kraut DA
    J Biol Chem; 2013 Nov; 288(48):34729-35. PubMed ID: 24151080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Next-Generation Trapping of Protease Substrates by Label-Free Proteomics.
    Lindemann C; Thomanek N; Kuhlmann K; Meyer HE; Marcus K; Narberhaus F
    Methods Mol Biol; 2018; 1841():189-206. PubMed ID: 30259488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rule governing the FtsH-mediated proteolysis of the MgtC virulence protein from Salmonella enterica serovar Typhimurium.
    Baek J; Choi E; Lee EJ
    J Microbiol; 2018 Aug; 56(8):565-570. PubMed ID: 30047085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins.
    Akiyama Y; Kihara A; Tokuda H; Ito K
    J Biol Chem; 1996 Dec; 271(49):31196-201. PubMed ID: 8940120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FtsH degrades dihydrofolate reductase by recognizing a partially folded species.
    Morehouse JP; Baker TA; Sauer RT
    Protein Sci; 2022 Sep; 31(9):e4410. PubMed ID: 36630366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli.
    Katz C; Ron EZ
    J Bacteriol; 2008 Nov; 190(21):7117-22. PubMed ID: 18776015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of homooligomerization and membrane association in ATPase and proteolytic activities of FtsH in vitro.
    Akiyama Y; Ito K
    Biochemistry; 2001 Jun; 40(25):7687-93. PubMed ID: 11412122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of degradation of bacterial cell division protein FtsZ by the ATP-dependent zinc-metalloprotease FtsH in vitro.
    Srinivasan R; Rajeswari H; Ajitkumar P
    Microbiol Res; 2008; 163(1):21-30. PubMed ID: 16638632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The I domain of the AAA+ HslUV protease coordinates substrate binding, ATP hydrolysis, and protein degradation.
    Sundar S; Baker TA; Sauer RT
    Protein Sci; 2012 Feb; 21(2):188-98. PubMed ID: 22102327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.