BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 31008579)

  • 1. Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries.
    Yan Y; Xu Z; Liu C; Dou H; Wei J; Zhao X; Ma J; Dong Q; Xu H; He YS; Ma ZF; Yang X
    ACS Appl Mater Interfaces; 2019 May; 11(19):17375-17383. PubMed ID: 31008579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hollow Structured Silicon Anodes with Stabilized Solid Electrolyte Interphase Film for Lithium-Ion Batteries.
    Lv Q; Liu Y; Ma T; Zhu W; Qiu X
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23501-6. PubMed ID: 26402521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sn-Co Nanoalloys Encapsulated in N-Doped Carbon Hollow Cubes as a High-Performance Anode Material for Lithium-Ion Batteries.
    Yang J; Zhang J; Zhou X; Ren Y; Jiang M; Tang J
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35216-35223. PubMed ID: 30232876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A carob-inspired nanoscale design of yolk-shell Si@void@TiO
    Zhang C; Yang J; Mi H; Li Y; Zhang P; Zhang H
    Dalton Trans; 2019 May; 48(20):6846-6852. PubMed ID: 31020978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-Scale Control of Silicon Expansion Space as Ultrastable Battery Anodes.
    Zhu J; Wang T; Fan F; Mei L; Lu B
    ACS Nano; 2016 Sep; 10(9):8243-51. PubMed ID: 27462725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hollow-structure engineering of a silicon-carbon anode for ultra-stable lithium-ion batteries.
    Liu H; Chen Y; Jiang B; Zhao Y; Guo X; Ma T
    Dalton Trans; 2020 May; 49(17):5669-5676. PubMed ID: 32292976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries.
    Li B; Yao F; Bae JJ; Chang J; Zamfir MR; Le DT; Pham DT; Yue H; Lee YH
    Sci Rep; 2015 Jan; 5():7659. PubMed ID: 25564245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically Conductive Shell-Protective Layer Capping on the Silicon Surface as the Anode Material for High-Performance Lithium-Ion Batteries.
    Na R; Minnici K; Zhang G; Lu N; González MA; Wang G; Reichmanis E
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40034-40042. PubMed ID: 31580639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries.
    Cai Z; Xu L; Yan M; Han C; He L; Hercule KM; Niu C; Yuan Z; Xu W; Qu L; Zhao K; Mai L
    Nano Lett; 2015 Jan; 15(1):738-44. PubMed ID: 25490409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double Core-Shell Si@C@SiO
    Yang T; Tian X; Li X; Wang K; Liu Z; Guo Q; Song Y
    Chemistry; 2017 Feb; 23(9):2165-2170. PubMed ID: 27995676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries.
    Yang Y; Ren JG; Wang X; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Sep; 5(18):8689-94. PubMed ID: 23900559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sponge-Like Porous-Conductive Polymer Coating for Ultrastable Silicon Anodes in Lithium-Ion Batteries.
    Yu Y; Yang C; Jiang Y; Zhu J; Zhao Y; Liang S; Wang K; Zhou Y; Liu Y; Zhang J; Jiang M
    Small; 2023 Nov; 19(47):e2303779. PubMed ID: 37485804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes.
    Lu Z; Liu N; Lee HW; Zhao J; Li W; Li Y; Cui Y
    ACS Nano; 2015 Mar; 9(3):2540-7. PubMed ID: 25738223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multilayered sturdy shell protects silicon nanoparticle Si@void C@TiO
    Hou L; Cui R; Xiong S; Jiang X; Wang D; Jiang Y; Deng S; Guo Y; Gao F
    Phys Chem Chem Phys; 2021 Feb; 23(6):3934-3941. PubMed ID: 33543199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniform yolk-shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery.
    Li X; Xing Y; Xu J; Deng Q; Shao LH
    Chem Commun (Camb); 2020 Jan; 56(3):364-367. PubMed ID: 31802084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategy for enhanced performance of silicon nanoparticle anodes for lithium-ion batteries.
    Chen X; Zheng J; Li L; Chu W
    RSC Adv; 2022 Jun; 12(28):17889-17897. PubMed ID: 35765341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon dioxide as a green carbon source for the synthesis of carbon cages encapsulating porous silicon as high performance lithium-ion battery anodes.
    Zhang Y; Du N; Chen Y; Lin Y; Jiang J; He Y; Lei Y; Yang D
    Nanoscale; 2018 Mar; 10(12):5626-5633. PubMed ID: 29528056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon/Mesoporous Carbon/Crystalline TiO
    Luo W; Wang Y; Wang L; Jiang W; Chou SL; Dou SX; Liu HK; Yang J
    ACS Nano; 2016 Nov; 10(11):10524-10532. PubMed ID: 27786460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable Synthesis of Pore-Rich Si/C@C Core-Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes.
    An W; He P; Che Z; Xiao C; Guo E; Pang C; He X; Ren J; Yuan G; Du N; Yang D; Peng DL; Zhang Q
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10308-10318. PubMed ID: 35175030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Coating Constraint Induced Anisotropic Swelling of Silicon in Si-Void@SiO
    Liu Q; Cui Z; Zou R; Zhang J; Xu K; Hu J
    Small; 2017 Apr; 13(13):. PubMed ID: 28121377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.