These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31009061)

  • 1. Variance component tests of multivariate mediation effects under composite null hypotheses.
    Huang YT
    Biometrics; 2019 Dec; 75(4):1191-1204. PubMed ID: 31009061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Hypothesis Testing for Causal Mediation Effects with Applications in Genome-wide Epigenetic Studies.
    Liu Z; Shen J; Barfield R; Schwartz J; Baccarelli AA; Lin X
    J Am Stat Assoc; 2022; 117(537):67-81. PubMed ID: 35989709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for large-scale single mediator hypothesis testing: Possible choices and comparisons.
    Du J; Zhou X; Clark-Boucher D; Hao W; Liu Y; Smith JA; Mukherjee B
    Genet Epidemiol; 2023 Mar; 47(2):167-184. PubMed ID: 36465006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global test for high-dimensional mediation: Testing groups of potential mediators.
    Djordjilović V; Page CM; Gran JM; Nøst TH; Sandanger TM; Veierød MB; Thoresen M
    Stat Med; 2019 Aug; 38(18):3346-3360. PubMed ID: 31074092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantile-function based null distribution in resampling based multiple testing.
    van der Laan MJ; Hubbard AE
    Stat Appl Genet Mol Biol; 2006; 5():Article14. PubMed ID: 17049025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying pleiotropic genes for complex phenotypes with summary statistics from a perspective of composite null hypothesis testing.
    Wang T; Lu H; Zeng P
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing for the indirect effect under the null for genome-wide mediation analyses.
    Barfield R; Shen J; Just AC; Vokonas PS; Schwartz J; Baccarelli AA; VanderWeele TJ; Lin X
    Genet Epidemiol; 2017 Dec; 41(8):824-833. PubMed ID: 29082545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multiple-testing procedure for high-dimensional mediation hypotheses.
    Dai JY; Stanford JL; LeBlanc M
    J Am Stat Assoc; 2022; 117(537):198-213. PubMed ID: 35400115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. To permute or not to permute.
    Huang Y; Xu H; Calian V; Hsu JC
    Bioinformatics; 2006 Sep; 22(18):2244-8. PubMed ID: 16870938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconsidering the asymptotic null distribution of likelihood ratio tests for genetic linkage in multivariate variance components models under complete pleiotropy.
    Han SS; Chang JT
    Biostatistics; 2010 Apr; 11(2):226-41. PubMed ID: 20029057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators.
    Huang YT; Pan WC
    Biometrics; 2016 Jun; 72(2):402-13. PubMed ID: 26414245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypothesis test for causal mediation of time-to-event mediator and outcome.
    Huang YT
    Stat Med; 2022 May; 41(11):1971-1985. PubMed ID: 35172384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IUSMMT: Survival mediation analysis of gene expression with multiple DNA methylation exposures and its application to cancers of TCGA.
    Shao Z; Wang T; Zhang M; Jiang Z; Huang S; Zeng P
    PLoS Comput Biol; 2021 Aug; 17(8):e1009250. PubMed ID: 34464378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A note on permutation tests for variance components in multilevel generalized linear mixed models.
    Fitzmaurice GM; Lipsitz SR; Ibrahim JG
    Biometrics; 2007 Sep; 63(3):942-6. PubMed ID: 17403100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond the traditional simulation design for evaluating type 1 error control: From the "theoretical" null to "empirical" null.
    Zhang T; Sun L
    Genet Epidemiol; 2019 Mar; 43(2):166-179. PubMed ID: 30478944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Empirical Bayes Mixture Model for Effect Size Distributions in Genome-Wide Association Studies.
    Thompson WK; Wang Y; Schork AJ; Witoelar A; Zuber V; Xu S; Werge T; Holland D; ; Andreassen OA; Dale AM
    PLoS Genet; 2015 Dec; 11(12):e1005717. PubMed ID: 26714184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Putative null distributions corresponding to tests of differential expression in the Golden Spike dataset are intensity dependent.
    Gaile DP; Miecznikowski JC
    BMC Genomics; 2007 Apr; 8():105. PubMed ID: 17445265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On estimation of the variance in Cochran-Armitage trend tests for genetic association using case-control studies.
    Zheng G; Gastwirth JL
    Stat Med; 2006 Sep; 25(18):3150-9. PubMed ID: 16397860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-part permutation tests for DNA methylation and microarray data.
    Neuhäuser M; Boes T; Jöckel KH
    BMC Bioinformatics; 2005 Feb; 6():35. PubMed ID: 15725357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.