These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 31009065)

  • 1. Detection of differentially expressed genes in discrete single-cell RNA sequencing data using a hurdle model with correlated random effects.
    Sekula M; Gaskins J; Datta S
    Biometrics; 2019 Dec; 75(4):1051-1062. PubMed ID: 31009065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Markov random field model-based approach for differentially expressed gene detection from single-cell RNA-seq data.
    Zhu B; Li H; Zhang L; Chandra SS; Zhao H
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive assessment of hurdle and zero-inflated models for single cell RNA-sequencing analysis.
    Cui T; Wang T
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37507115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bias, robustness and scalability in single-cell differential expression analysis.
    Soneson C; Robinson MD
    Nat Methods; 2018 Apr; 15(4):255-261. PubMed ID: 29481549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scMEB: a fast and clustering-independent method for detecting differentially expressed genes in single-cell RNA-seq data.
    Zhu J; Yang Y
    BMC Genomics; 2023 May; 24(1):280. PubMed ID: 37231345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data.
    Chen S; Hua K; Cui H; Jiang R
    BMC Bioinformatics; 2019 May; 20(Suppl 7):0. PubMed ID: 31074382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications.
    Van den Berge K; Perraudeau F; Soneson C; Love MI; Risso D; Vert JP; Robinson MD; Dudoit S; Clement L
    Genome Biol; 2018 Feb; 19(1):24. PubMed ID: 29478411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression of single-cell RNA-seq data using Tweedie models.
    Mallick H; Chatterjee S; Chowdhury S; Chatterjee S; Rahnavard A; Hicks SC
    Stat Med; 2022 Aug; 41(18):3492-3510. PubMed ID: 35656596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data.
    Jia C; Hu Y; Kelly D; Kim J; Li M; Zhang NR
    Nucleic Acids Res; 2017 Nov; 45(19):10978-10988. PubMed ID: 29036714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in differential expression analysis for single-cell RNA-seq and spatially resolved transcriptomic studies.
    Guo X; Ning J; Chen Y; Liu G; Zhao L; Fan Y; Sun S
    Brief Funct Genomics; 2024 Mar; 23(2):95-109. PubMed ID: 37022699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DEsingle for detecting three types of differential expression in single-cell RNA-seq data.
    Miao Z; Deng K; Wang X; Zhang X
    Bioinformatics; 2018 Sep; 34(18):3223-3224. PubMed ID: 29688277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Technical and Biological Variability in Single-Cell RNA Sequencing.
    Kim B; Lee E; Kim JK
    Methods Mol Biol; 2019; 1935():25-43. PubMed ID: 30758818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse weighting method with jackknife variance estimator for differential expression analysis of single-cell RNA sequencing data.
    Zhou L; Pan Q
    Comput Biol Chem; 2022 Oct; 100():107733. PubMed ID: 35926443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.