These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 31009065)
21. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study. Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704 [TBL] [Abstract][Full Text] [Related]
22. Reproducibility of Methods to Detect Differentially Expressed Genes from Single-Cell RNA Sequencing. Mou T; Deng W; Gu F; Pawitan Y; Vu TN Front Genet; 2019; 10():1331. PubMed ID: 32010190 [TBL] [Abstract][Full Text] [Related]
23. Differential Expression Analysis in Single-Cell Transcriptomics. Alessandrì L; Arigoni M; Calogero R Methods Mol Biol; 2019; 1979():425-432. PubMed ID: 31028652 [TBL] [Abstract][Full Text] [Related]
24. Cell lineage inference from SNP and scRNA-Seq data. Ding J; Lin C; Bar-Joseph Z Nucleic Acids Res; 2019 Jun; 47(10):e56. PubMed ID: 30820578 [TBL] [Abstract][Full Text] [Related]
25. Detecting Interactive Gene Groups for Single-Cell RNA-Seq Data Based on Co-Expression Network Analysis and Subgraph Learning. Ye X; Zhang W; Futamura Y; Sakurai T Cells; 2020 Aug; 9(9):. PubMed ID: 32825786 [TBL] [Abstract][Full Text] [Related]
26. scCODE: an R package for data-specific differentially expressed gene detection on single-cell RNA-sequencing data. Zou J; Deng F; Wang M; Zhang Z; Liu Z; Zhang X; Hua R; Chen K; Zou X; Hao J Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35598331 [TBL] [Abstract][Full Text] [Related]
27. SigEMD: A powerful method for differential gene expression analysis in single-cell RNA sequencing data. Wang T; Nabavi S Methods; 2018 Aug; 145():25-32. PubMed ID: 29702224 [TBL] [Abstract][Full Text] [Related]
28. SimCH: simulation of single-cell RNA sequencing data by modeling cellular heterogeneity at gene expression level. Sun L; Wang G; Zhang Z Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36575569 [TBL] [Abstract][Full Text] [Related]
29. A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data. Qi Y; Guo Y; Jiao H; Shang X BMC Bioinformatics; 2020 Jun; 21(1):240. PubMed ID: 32527285 [TBL] [Abstract][Full Text] [Related]
30. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data. Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142 [TBL] [Abstract][Full Text] [Related]
33. Computational approaches for interpreting scRNA-seq data. Rostom R; Svensson V; Teichmann SA; Kar G FEBS Lett; 2017 Aug; 591(15):2213-2225. PubMed ID: 28524227 [TBL] [Abstract][Full Text] [Related]
34. Single-Cell RNA-Seq Technologies and Computational Analysis Tools: Application in Cancer Research. Song Q; Liu L Methods Mol Biol; 2022; 2413():245-255. PubMed ID: 35044670 [TBL] [Abstract][Full Text] [Related]
35. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters. Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249 [TBL] [Abstract][Full Text] [Related]
36. scCTS: identifying the cell type-specific marker genes from population-level single-cell RNA-seq. Chen L; Guo Z; Deng T; Wu H Genome Biol; 2024 Oct; 25(1):269. PubMed ID: 39402623 [TBL] [Abstract][Full Text] [Related]
37. Detecting Fear-Memory-Related Genes from Neuronal scRNA-seq Data by Diverse Distributions and Bhattacharyya Distance. Zhang S; Xie L; Cui Y; Carone BR; Chen Y Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36009024 [TBL] [Abstract][Full Text] [Related]
38. Bayesian-frequentist hybrid inference framework for single cell RNA-seq analyses. Han G; Yan D; Sun Z; Fang J; Chang X; Wilson L; Liu Y Hum Genomics; 2024 Jun; 18(1):69. PubMed ID: 38902839 [TBL] [Abstract][Full Text] [Related]
39. Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data. Wang T; Li B; Nelson CE; Nabavi S BMC Bioinformatics; 2019 Jan; 20(1):40. PubMed ID: 30658573 [TBL] [Abstract][Full Text] [Related]
40. A computational method to aid the design and analysis of single cell RNA-seq experiments for cell type identification. Abrams D; Kumar P; Karuturi RKM; George J BMC Bioinformatics; 2019 Jun; 20(Suppl 11):275. PubMed ID: 31167661 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]