These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 31009065)

  • 41. BCseq: accurate single cell RNA-seq quantification with bias correction.
    Chen L; Zheng S
    Nucleic Acids Res; 2018 Aug; 46(14):e82. PubMed ID: 29718338
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An empirical Bayes method for differential expression analysis of single cells with deep generative models.
    Boyeau P; Regier J; Gayoso A; Jordan MI; Lopez R; Yosef N
    Proc Natl Acad Sci U S A; 2023 May; 120(21):e2209124120. PubMed ID: 37192164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.
    Wu H; Kirita Y; Donnelly EL; Humphreys BD
    J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data.
    Dadaneh SZ; de Figueiredo P; Sze SH; Zhou M; Qian X
    BMC Genomics; 2020 Sep; 21(Suppl 9):585. PubMed ID: 32900358
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of Computational Methods for Imputing Single-Cell RNA-Sequencing Data.
    Zhang L; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):376-389. PubMed ID: 29994128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quality Control of Single-Cell RNA-seq.
    Jiang P
    Methods Mol Biol; 2019; 1935():1-9. PubMed ID: 30758816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discrete distributional differential expression (D3E)--a tool for gene expression analysis of single-cell RNA-seq data.
    Delmans M; Hemberg M
    BMC Bioinformatics; 2016 Feb; 17():110. PubMed ID: 26927822
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single cell RNA-seq data clustering using TF-IDF based methods.
    Moussa M; Măndoiu II
    BMC Genomics; 2018 Aug; 19(Suppl 6):569. PubMed ID: 30367575
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CellRegMap: a statistical framework for mapping context-specific regulatory variants using scRNA-seq.
    Cuomo ASE; Heinen T; Vagiaki D; Horta D; Marioni JC; Stegle O
    Mol Syst Biol; 2022 Aug; 18(8):e10663. PubMed ID: 35972065
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detecting cell-type-specific allelic expression imbalance by integrative analysis of bulk and single-cell RNA sequencing data.
    Fan J; Wang X; Xiao R; Li M
    PLoS Genet; 2021 Mar; 17(3):e1009080. PubMed ID: 33661921
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bayesian estimation of cell type-specific gene expression with prior derived from single-cell data.
    Wang J; Roeder K; Devlin B
    Genome Res; 2021 Oct; 31(10):1807-1818. PubMed ID: 33837133
    [TBL] [Abstract][Full Text] [Related]  

  • 53. scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data.
    Zheng X; Huang Y; Zou X
    PLoS Comput Biol; 2020 Jul; 16(7):e1007471. PubMed ID: 32716923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Bayesian framework to study tumor subclone-specific expression by combining bulk DNA and single-cell RNA sequencing data.
    Qiao Y; Huang X; Moos PJ; Ahmann JM; Pomicter AD; Deininger MW; Byrd JC; Woyach JA; Stephens DM; Marth GT
    Genome Res; 2024 Feb; 34(1):94-105. PubMed ID: 38195207
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Linnorm: improved statistical analysis for single cell RNA-seq expression data.
    Yip SH; Wang P; Kocher JA; Sham PC; Wang J
    Nucleic Acids Res; 2017 Dec; 45(22):e179. PubMed ID: 28981748
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data.
    Wang Z; Jin S; Liu G; Zhang X; Wang N; Wu D; Hu Y; Zhang C; Jiang Q; Xu L; Wang Y
    BMC Bioinformatics; 2017 May; 18(1):270. PubMed ID: 28535748
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Robustness of single-cell RNA-seq for identifying differentially expressed genes.
    Liu Y; Huang J; Pandey R; Liu P; Therani B; Qiu Q; Rao S; Geurts AM; Cowley AW; Greene AS; Liang M
    BMC Genomics; 2023 Jul; 24(1):371. PubMed ID: 37394518
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential Variation Analysis Enables Detection of Tumor Heterogeneity Using Single-Cell RNA-Sequencing Data.
    Davis-Marcisak EF; Sherman TD; Orugunta P; Stein-O'Brien GL; Puram SV; Roussos Torres ET; Hopkins AC; Jaffee EM; Favorov AV; Afsari B; Goff LA; Fertig EJ
    Cancer Res; 2019 Oct; 79(19):5102-5112. PubMed ID: 31337651
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CASi: A framework for cross-timepoint analysis of single-cell RNA sequencing data.
    Wang Y; Flowers CR; Wang M; Huang X; Li Z
    Sci Rep; 2024 May; 14(1):10633. PubMed ID: 38724550
    [TBL] [Abstract][Full Text] [Related]  

  • 60. C-ziptf: stable tensor factorization for zero-inflated multi-dimensional genomics data.
    Chafamo D; Shanmugam V; Tokcan N
    BMC Bioinformatics; 2024 Oct; 25(1):323. PubMed ID: 39369208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.