These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31009236)

  • 1. Integration of Multiple Data Sources for Gene Network Inference Using Genetic Perturbation Data.
    Liang X; Young WC; Hung LH; Raftery AE; Yeung KY
    J Comput Biol; 2019 Oct; 26(10):1113-1129. PubMed ID: 31009236
    [No Abstract]   [Full Text] [Related]  

  • 2. Cell cycle gene networks are associated with melanoma prognosis.
    Wang L; Hurley DG; Watkins W; Araki H; Tamada Y; Muthukaruppan A; Ranjard L; Derkac E; Imoto S; Miyano S; Crampin EJ; Print CG
    PLoS One; 2012; 7(4):e34247. PubMed ID: 22536322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Bayesian inference for gene regulatory networks using ScanBMA.
    Young WC; Raftery AE; Yeung KY
    BMC Syst Biol; 2014 Apr; 8():47. PubMed ID: 24742092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating external biological knowledge in the construction of regulatory networks from time-series expression data.
    Lo K; Raftery AE; Dombek KM; Zhu J; Schadt EE; Bumgarner RE; Yeung KY
    BMC Syst Biol; 2012 Aug; 6():101. PubMed ID: 22898396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian data fusion based approach for learning genome-wide transcriptional regulatory networks.
    Sauta E; Demartini A; Vitali F; Riva A; Bellazzi R
    BMC Bioinformatics; 2020 May; 21(1):219. PubMed ID: 32471360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian variable selection with graphical structure learning: Applications in integrative genomics.
    Kundu S; Cheng Y; Shin M; Manyam G; Mallick BK; Baladandayuthapani V
    PLoS One; 2018; 13(7):e0195070. PubMed ID: 30059495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian Data Fusion of Gene Expression and Histone Modification Profiles for Inference of Gene Regulatory Network.
    Chen H; Maduranga DAK; Mundra PA; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):516-525. PubMed ID: 30207963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrative network inference approach to predict mechanisms of cancer chemoresistance.
    Lecca P
    Integr Biol (Camb); 2013 Mar; 5(3):458-73. PubMed ID: 23340828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoregressive models for gene regulatory network inference: sparsity, stability and causality issues.
    Michailidis G; d'Alché-Buc F
    Math Biosci; 2013 Dec; 246(2):326-34. PubMed ID: 24176667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. tuxnet: a simple interface to process RNA sequencing data and infer gene regulatory networks.
    Spurney RJ; Van den Broeck L; Clark NM; Fisher AP; de Luis Balaguer MA; Sozzani R
    Plant J; 2020 Feb; 101(3):716-730. PubMed ID: 31571287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of gene pathways using mixture Bayesian networks.
    Ko Y; Zhai C; Rodriguez-Zas S
    BMC Syst Biol; 2009 May; 3():54. PubMed ID: 19454027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.
    Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA
    Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prior-based integrative framework for functional transcriptional regulatory network inference.
    Siahpirani AF; Roy S
    Nucleic Acids Res; 2017 Feb; 45(4):e21. PubMed ID: 27794550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A canonical correlation analysis-based dynamic bayesian network prior to infer gene regulatory networks from multiple types of biological data.
    Baur B; Bozdag S
    J Comput Biol; 2015 Apr; 22(4):289-99. PubMed ID: 25844668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology.
    Santra T; Kolch W; Kholodenko BN
    BMC Syst Biol; 2013 Jul; 7():57. PubMed ID: 23829771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robust gene regulatory network inference method base on Kalman filter and linear regression.
    Pirgazi J; Khanteymoori AR
    PLoS One; 2018; 13(7):e0200094. PubMed ID: 30001352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seeded Bayesian Networks: constructing genetic networks from microarray data.
    Djebbari A; Quackenbush J
    BMC Syst Biol; 2008 Jul; 2():57. PubMed ID: 18601736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference and validation of predictive gene networks from biomedical literature and gene expression data.
    Olsen C; Fleming K; Prendergast N; Rubio R; Emmert-Streib F; Bontempi G; Haibe-Kains B; Quackenbush J
    Genomics; 2014; 103(5-6):329-36. PubMed ID: 24691108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing gene regulatory networks inference through hub-based data integration.
    Naseri A; Sharghi M; Hasheminejad SMH
    Comput Biol Chem; 2021 Dec; 95():107589. PubMed ID: 34673384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian machine learning and its potential applications to the genomic study of oral oncology.
    Sebastiani P; Yu YH; Ramoni MF
    Adv Dent Res; 2003 Dec; 17():104-8. PubMed ID: 15126219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.