These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 31009678)
21. RNAi-mediated pest control targeting the Troponin I (wupA) gene in sweet potato weevil, Cylas formicarius. Zhang M; Zhang X; Chen T; Liao Y; Yang B; Wang G Insect Sci; 2024 Jun; ():. PubMed ID: 38863245 [TBL] [Abstract][Full Text] [Related]
22. A nuclease specific to lepidopteran insects suppresses RNAi. Guan RB; Li HC; Fan YJ; Hu SR; Christiaens O; Smagghe G; Miao XX J Biol Chem; 2018 Apr; 293(16):6011-6021. PubMed ID: 29500196 [TBL] [Abstract][Full Text] [Related]
23. Why is oral-induced RNAi inefficient in Diatraea saccharalis? A possible role for DsREase and other nucleases. Abreu Reis M; Noriega DD; Dos Santos Alves G; Ramos Coelho R; Grossi-de-Sa MF; Antonino JD Pestic Biochem Physiol; 2022 Aug; 186():105166. PubMed ID: 35973772 [TBL] [Abstract][Full Text] [Related]
24. RNA Interference Is Enhanced by Knockdown of double-stranded RNases in the Yellow Fever Mosquito Giesbrecht D; Heschuk D; Wiens I; Boguski D; LaChance P; Whyard S Insects; 2020 May; 11(6):. PubMed ID: 32471283 [TBL] [Abstract][Full Text] [Related]
25. Knockdown of double-stranded RNases (dsRNases) enhances oral RNA interference (RNAi) in the corn leafhopper, Dalbulus maidis. Dalaisón-Fuentes LI; Pascual A; Crespo M; Andrada NL; Welchen E; Catalano MI Pestic Biochem Physiol; 2023 Nov; 196():105618. PubMed ID: 37945254 [TBL] [Abstract][Full Text] [Related]
26. Identification and functional analysis of dsRNases in spotted-wing drosophila, Drosophila suzukii. Yoon JS; Ahn SJ; Flinn CM; Choi MY Arch Insect Biochem Physiol; 2021 Aug; 107(4):e21822. PubMed ID: 34155698 [TBL] [Abstract][Full Text] [Related]
27. Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: evidence from Manduca sexta and Blattella germanica. Garbutt JS; Bellés X; Richards EH; Reynolds SE J Insect Physiol; 2013 Feb; 59(2):171-8. PubMed ID: 22664137 [TBL] [Abstract][Full Text] [Related]
28. Molecular Characterizations of Double-Stranded RNA Degrading Nuclease Genes from Cooper AMW; Song H; Shi X; Yu Z; Lorenzen M; Silver K; Zhang J; Zhu KY Insects; 2020 Sep; 11(10):. PubMed ID: 32977554 [TBL] [Abstract][Full Text] [Related]
29. Molecular mechanisms influencing efficiency of RNA interference in insects. Cooper AM; Silver K; Zhang J; Park Y; Zhu KY Pest Manag Sci; 2019 Jan; 75(1):18-28. PubMed ID: 29931761 [TBL] [Abstract][Full Text] [Related]
30. Efficiency of RNA interference is improved by knockdown of dsRNA nucleases in tephritid fruit flies. Tayler A; Heschuk D; Giesbrecht D; Park JY; Whyard S Open Biol; 2019 Dec; 9(12):190198. PubMed ID: 31795920 [TBL] [Abstract][Full Text] [Related]
31. Silencing the Olfactory Co-Receptor RferOrco Reduces the Response to Pheromones in the Red Palm Weevil, Rhynchophorus ferrugineus. Soffan A; Antony B; Abdelazim M; Shukla P; Witjaksono W; Aldosari SA; Aldawood AS PLoS One; 2016; 11(9):e0162203. PubMed ID: 27606688 [TBL] [Abstract][Full Text] [Related]
32. Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests. Firmino AA; Fonseca FC; de Macedo LL; Coelho RR; Antonino de Souza JD; Togawa RC; Silva-Junior OB; Pappas GJ; da Silva MC; Engler G; Grossi-de-Sa MF PLoS One; 2013; 8(12):e85079. PubMed ID: 24386449 [TBL] [Abstract][Full Text] [Related]
33. Identification of the Extracellular Nuclease Influencing Soaking RNA Interference Efficiency in Wang R; Li Y; Li D; Zhang W; Wang X; Wen X; Liu Z; Feng Y; Zhang X Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293134 [TBL] [Abstract][Full Text] [Related]
34. Identification and Characterization of a Double-Stranded RNA Degrading Nuclease Influencing RNAi Efficiency in the Rice Leaf Folder Li J; Du J; Li S; Wang X Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409320 [TBL] [Abstract][Full Text] [Related]
35. DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Christiaens O; Swevers L; Smagghe G Peptides; 2014 Mar; 53():307-14. PubMed ID: 24394433 [TBL] [Abstract][Full Text] [Related]
37. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Zhang H; Li HC; Miao XX Insect Sci; 2013 Feb; 20(1):15-30. PubMed ID: 23955822 [TBL] [Abstract][Full Text] [Related]
38. Coordinated RNA-Seq and peptidomics identify neuropeptides and G-protein coupled receptors (GPCRs) in the large pine weevil Hylobius abietis, a major forestry pest. Pandit AA; Ragionieri L; Marley R; Yeoh JGC; Inward DJG; Davies SA; Predel R; Dow JAT Insect Biochem Mol Biol; 2018 Oct; 101():94-107. PubMed ID: 30165105 [TBL] [Abstract][Full Text] [Related]
39. RNA interference-mediated control of cigarette beetle, Lasioderma serricorne. Koo J; Chereddy SCRR; Palli SR Arch Insect Biochem Physiol; 2020 Aug; 104(4):e21680. PubMed ID: 32346914 [TBL] [Abstract][Full Text] [Related]
40. Double-stranded RNA targeting calmodulin reveals a potential target for pest management of Nilaparvata lugens. Wang W; Wan P; Lai F; Zhu T; Fu Q Pest Manag Sci; 2018 Jul; 74(7):1711-1719. PubMed ID: 29381254 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]