These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 31009682)

  • 21. Identification of donor splice sites using support vector machine: a computational approach based on positional, compositional and dependency features.
    Meher PK; Sahu TK; Rao AR; Wahi SD
    Algorithms Mol Biol; 2016; 11():16. PubMed ID: 27252772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene expression, intron density, and splice site strength in Drosophila and Caenorhabditis.
    Fahey ME; Higgins DG
    J Mol Evol; 2007 Sep; 65(3):349-57. PubMed ID: 17763878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying splicing sites in eukaryotic RNA: support vector machine approach.
    Sun YF; Fan XD; Li YD
    Comput Biol Med; 2003 Jan; 33(1):17-29. PubMed ID: 12485627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of RNA structure on the prediction of donor and acceptor splice sites.
    Marashi SA; Eslahchi C; Pezeshk H; Sadeghi M
    BMC Bioinformatics; 2006 Jun; 7():297. PubMed ID: 16772025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. UbNiRF: A Hybrid Framework Based on Null Importances and Random Forest that Combines Multiple Features to Predict Ubiquitination Sites in
    Li X; Yuan Z; Chen Y
    Front Biosci (Landmark Ed); 2024 May; 29(5):197. PubMed ID: 38812315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens.
    Rensing SA; Fritzowsky D; Lang D; Reski R
    BMC Genomics; 2005 Mar; 6():43. PubMed ID: 15784153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods.
    Zhang W; Zhu X; Fu Y; Tsuji J; Weng Z
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):464. PubMed ID: 29219070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks.
    Liu X; Zhang H; Zeng Y; Zhu X; Zhu L; Fu J
    Genes (Basel); 2024 Mar; 15(4):. PubMed ID: 38674339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative analyses between retained introns and constitutively spliced introns in Arabidopsis thaliana using random forest and support vector machine.
    Mao R; Raj Kumar PK; Guo C; Zhang Y; Liang C
    PLoS One; 2014; 9(8):e104049. PubMed ID: 25110928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 2passtools: two-pass alignment using machine-learning-filtered splice junctions increases the accuracy of intron detection in long-read RNA sequencing.
    Parker MT; Knop K; Barton GJ; Simpson GG
    Genome Biol; 2021 Mar; 22(1):72. PubMed ID: 33648554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human Splice-Site Prediction with Deep Neural Networks.
    Naito T
    J Comput Biol; 2018 Aug; 25(8):954-961. PubMed ID: 29668310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RASE: recognition of alternatively spliced exons in C.elegans.
    Rätsch G; Sonnenburg S; Schölkopf B
    Bioinformatics; 2005 Jun; 21 Suppl 1():i369-77. PubMed ID: 15961480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Study of Domain Adaptation Classifiers Derived From Logistic Regression for the Task of Splice Site Prediction.
    Herndon N; Caragea D
    IEEE Trans Nanobioscience; 2016 Mar; 15(2):75-83. PubMed ID: 26849871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SpliceRover: interpretable convolutional neural networks for improved splice site prediction.
    Zuallaert J; Godin F; Kim M; Soete A; Saeys Y; De Neve W
    Bioinformatics; 2018 Dec; 34(24):4180-4188. PubMed ID: 29931149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transductive learning as an alternative to translation initiation site identification.
    Nunes Pinto CL; Nobre CN; Zárate LE
    BMC Bioinformatics; 2017 Feb; 18(1):81. PubMed ID: 28152994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive splice-site analysis using comparative genomics.
    Sheth N; Roca X; Hastings ML; Roeder T; Krainer AR; Sachidanandam R
    Nucleic Acids Res; 2006; 34(14):3955-67. PubMed ID: 16914448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NucPosPred: Predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC.
    Jia C; Yang Q; Zou Q
    J Theor Biol; 2018 Aug; 450():15-21. PubMed ID: 29678692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic splice site prediction algorithm based on nucleotide sequence pattern for RNA viruses.
    Tsai KN; Lin SH; Shih SR; Lai JS; Chen CM
    Comput Biol Chem; 2009 Apr; 33(2):171-5. PubMed ID: 18815073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Splicer: A CNN Model for Splice Site Prediction in Genetic Sequences.
    Fernandez-Castillo E; Barbosa-Santillán LI; Falcon-Morales L; Sánchez-Escobar JJ
    Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.