BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 31009868)

  • 1. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution.
    Ma J; Lei M; Weng L; Li Y; Chen Y; Islam MS; Zhao J; Chen T
    Chemosphere; 2019 Jul; 227():614-623. PubMed ID: 31009868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization and release risk of arsenic associated with partitioning and reactivity of iron oxide minerals in paddy soils.
    Ouyang X; Ma J; Weng L; Chen Y; Wei R; Zhao J; Ren Z; Peng H; Liao Z; Li Y
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36377-36390. PubMed ID: 32562227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.
    Kim EJ; Yoo JC; Baek K
    Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities.
    Tabelin CB; Silwamba M; Paglinawan FC; Mondejar AJS; Duc HG; Resabal VJ; Opiso EM; Igarashi T; Tomiyama S; Ito M; Hiroyoshi N; Villacorte-Tabelin M
    Chemosphere; 2020 Dec; 260():127574. PubMed ID: 32688316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea.
    Lee PK; Yu S; Jeong YJ; Seo J; Choi SG; Yoon BY
    Chemosphere; 2019 Feb; 217():183-194. PubMed ID: 30419376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source.
    Chrastný V; Vaněk A; Teper L; Cabala J; Procházka J; Pechar L; Drahota P; Penížek V; Komárek M; Novák M
    Environ Monit Assess; 2012 Apr; 184(4):2517-36. PubMed ID: 21674226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lead isotopes and heavy minerals analyzed as tools to understand the distribution of lead and other potentially toxic elements in soils contaminated by Cu smelting (Legnica, Poland).
    Tyszka R; Pietranik A; Kierczak J; Ettler V; Mihaljevič M; Medyńska-Juraszek A
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24350-24363. PubMed ID: 27655618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of metal contaminant sources in river sediments influenced by mining and smelting activities using stable Pb and Zn isotopes.
    Joe DJ; Choi MS; Lee JH; Kim CK; Choi MS; Shin HS
    Environ Sci Pollut Res Int; 2024 Mar; 31(13):20521-20533. PubMed ID: 38376780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.
    Rodríguez L; Ruiz E; Alonso-Azcárate J; Rincón J
    J Environ Manage; 2009 Feb; 90(2):1106-16. PubMed ID: 18572301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic availability in rice from a mining area: is amorphous iron oxide-bound arsenic a source or sink?
    Liu C; Yu HY; Liu C; Li F; Xu X; Wang Q
    Environ Pollut; 2015 Apr; 199():95-101. PubMed ID: 25638690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Polluted characteristics of Zn, Pb, Cd, Cu and As in soil of different mining activity zones].
    Liao GL; Wu C
    Huan Jing Ke Xue; 2005 May; 26(3):157-61. PubMed ID: 16124490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of As-polluted soils by laboratory X-ray-based techniques coupled with sequential extractions and electron microscopy: the case of Crocette gold mine in the Monte Rosa mining district (Italy).
    Allegretta I; Porfido C; Martin M; Barberis E; Terzano R; Spagnuolo M
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25080-25090. PubMed ID: 29936615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial distribution and environmental implications of heavy metals in typical lead (Pb)-zinc (Zn) mine tailings impoundments in Guangdong Province, South China.
    Chen T; Lei C; Yan B; Li LL; Xu DM; Ying GG
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36702-36711. PubMed ID: 30377971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geochemical fractions and risk assessment of trace elements in soils around Jiaojia gold mine in Shandong Province, China.
    Cao F; Kong L; Yang L; Zhang W
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13496-505. PubMed ID: 25940495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal).
    Candeias C; Ávila PF; Ferreira da Silva E; Teixeira JP
    Environ Monit Assess; 2015 Mar; 187(3):135. PubMed ID: 25702148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.