These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31009892)

  • 1. The long-term stability of Fe
    Zhang D; Wang S; Gomez MA; Wang Y; Jia Y
    J Hazard Mater; 2019 Jul; 374():276-286. PubMed ID: 31009892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineralogical Controls on the Bioaccessibility of Arsenic in Fe(III)-As(V) Coprecipitates.
    Ehlert K; Mikutta C; Jin Y; Kretzschmar R
    Environ Sci Technol; 2018 Jan; 52(2):616-627. PubMed ID: 29300080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The long-term transformation of Fe
    Zhang D; Xia Q; Wang Y; Wang Y; Jin Y; Wang D; Guan X; Xu D; Wang F; Jia Y
    J Hazard Mater; 2024 Dec; 480():135916. PubMed ID: 39305599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coprecipitation of arsenate with metal oxides. 2. Nature, mineralogy, and reactivity of iron(III) precipitates.
    Violante A; Del Gaudio S; Pigna M; Ricciardella M; Banerjee D
    Environ Sci Technol; 2007 Dec; 41(24):8275-80. PubMed ID: 18200851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic associated with gypsum produced from Fe(III)-As(V) coprecipitation: Implications for the stability of industrial As-bearing waste.
    Wang S; Zhang D; Li X; Zhang G; Wang Y; Wang X; Gomez MA; Jia Y
    J Hazard Mater; 2018 Oct; 360():311-318. PubMed ID: 30125747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partitioning and transformation behavior of arsenic during Fe(III)-As(III)-As(V)-SO
    Ma X; Zhang J; Gomez MA; Ding Y; Yao S; Lv H; Wang X; Wang S; Jia Y
    Sci Total Environ; 2021 Dec; 799():149474. PubMed ID: 34426338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The adsorption of As(V) on poorly crystalline Fe oxyhydroxides, revisited: Effect of the reaction media and the drying treatment.
    Zhang D; Cao R; Wang Y; Wang S; Jia Y
    J Hazard Mater; 2021 Aug; 416():125863. PubMed ID: 34492811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments.
    Xue Q; Ran Y; Tan Y; Peacock CL; Du H
    Chemosphere; 2019 Jun; 224():103-110. PubMed ID: 30818188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term stability of the Fe(III)-As(V) coprecipitates: Effects of neutralization mode and the addition of Fe(II) on arsenic retention.
    Zhang D; Wang S; Gomez MA; Wang Y; Jia Y
    Chemosphere; 2019 Dec; 237():124503. PubMed ID: 31398610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic Fe transformation induced decrease in the adsorption and enhancement in the reduction of Cr(VI) by humic acid-ferric iron coprecipitates.
    Wang H; Liu F; Zhang Y; Gong X; Zhu J; Tan W; Yuan Y; Zhang J; Chen H; Xi B
    J Hazard Mater; 2024 Oct; 478():135595. PubMed ID: 39182292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates.
    ThomasArrigo LK; Byrne JM; Kappler A; Kretzschmar R
    Environ Sci Technol; 2018 Nov; 52(21):12316-12326. PubMed ID: 30991468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Organic Matter on Microbially-Mediated Reduction and Mobilization of Arsenic and Iron in Arsenic(V)-Bearing Ferrihydrite.
    Cai X; ThomasArrigo LK; Fang X; Bouchet S; Cui Y; Kretzschmar R
    Environ Sci Technol; 2021 Jan; 55(2):1319-1328. PubMed ID: 33377766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution.
    Jia Y; Zhang D; Pan R; Xu L; Demopoulos GP
    Water Res; 2012 Feb; 46(2):500-8. PubMed ID: 22142599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coprecipitation of arsenate with metal oxides: nature, mineralogy, and reactivity of aluminum precipitates.
    Violante A; Ricciardella M; Del Gaudio S; Pigna M
    Environ Sci Technol; 2006 Aug; 40(16):4961-7. PubMed ID: 16955893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stability of poorly crystalline arsenical ferrihydrite after long-term soil suspension incubation.
    Zhang T; Chen X; Wang Y; Li L; Sun Y; Wang Y; Zeng X
    Chemosphere; 2022 Mar; 291(Pt 2):132844. PubMed ID: 34767854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of iron reduction by enolic hydroxyl groups on the stability of scorodite in hydrometallurgical industries and arsenic mobilization.
    Yuan Z; Wang S; Ma X; Wang X; Zhang G; Jia Y; Zheng W
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26534-26544. PubMed ID: 28948427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferrihydrite Growth and Transformation in the Presence of Ferrous Iron and Model Organic Ligands.
    ThomasArrigo LK; Kaegi R; Kretzschmar R
    Environ Sci Technol; 2019 Dec; 53(23):13636-13647. PubMed ID: 31718167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergism of Fe and Al salts for the coagulation of dissolved organic matter: Structural developments of Fe/Al-organic matter associations.
    Chen KY; Liu YT; Hung JT; Hsieh YC; Tzou YM
    Chemosphere; 2023 Mar; 316():137737. PubMed ID: 36608877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of enoxacin with different dissociated species during the transformation of ferrihydrite-antibiotic coprecipitates.
    Guo Z; Wang L; Feng B; Zhang L; Zhang W; Dong D
    Sci Total Environ; 2024 Feb; 913():169797. PubMed ID: 38181939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.