BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 31009991)

  • 1. Development of a Green Downstream Process for the Valorization of
    Gallego R; Martínez M; Cifuentes A; Ibáñez E; Herrero M
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31009991
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Amaro HM; Guedes AC; Preto MAC; Sousa-Pinto I; Malcata FX
    Mar Drugs; 2018 Sep; 16(9):. PubMed ID: 30208611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Pseudoalteromonas sp. MEBiC 03485 on biomass production and sulfated polysaccharide biosynthesis in Porphyridium cruentum UTEX 161.
    Han SI; Jeon MS; Heo YM; Kim S; Choi YE
    Bioresour Technol; 2020 Apr; 302():122791. PubMed ID: 31981805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold stress treatment enhances production of metabolites and biodiesel feedstock in Porphyridium cruentum via adjustment of cell membrane fluidity.
    Huang JJ; Cheung PCK
    Sci Total Environ; 2021 Aug; 780():146612. PubMed ID: 34030318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata.
    Montalescot V; Rinaldi T; Touchard R; Jubeau S; Frappart M; Jaouen P; Bourseau P; Marchal L
    Bioresour Technol; 2015 Nov; 196():339-46. PubMed ID: 26253918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum.
    Lutzu GA; Zhang L; Zhang Z; Liu T
    Bioprocess Biosyst Eng; 2017 Jan; 40(1):73-83. PubMed ID: 27614620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of different sequences of mechanical and thermal processing on the rheological properties of Porphyridium cruentum and Chlorella vulgaris as functional food ingredients.
    Bernaerts TMM; Panozzo A; Verhaegen KAF; Gheysen L; Foubert I; Moldenaers P; Hendrickx ME; Van Loey AM
    Food Funct; 2018 Apr; 9(4):2433-2446. PubMed ID: 29632927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprocess intensification: a potential aqueous two-phase process for the primary recovery of B-phycoerythrin from Porphyridium cruentum.
    Benavides J; Rito-Palomares M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Jul; 807(1):33-8. PubMed ID: 15177157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography.
    Bermejo R; Acién FG; Ibáñez MJ; Fernández JM; Molina E; Alvarez-Pez JM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Jun; 790(1-2):317-25. PubMed ID: 12767340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunomodulatory, Antioxidant Activity and Cytotoxic Effect of Sulfated Polysaccharides from
    Casas-Arrojo V; Decara J; de Los Ángeles Arrojo-Agudo M; Pérez-Manríquez C; Abdala-Díaz RT
    Biomolecules; 2021 Mar; 11(4):. PubMed ID: 33805009
    [No Abstract]   [Full Text] [Related]  

  • 11. Preparative Recovery of Carotenoids from Microalgal Biomass.
    Cerón García MDC; González López CV; Fernández Sevilla JM; Molina Grima E
    Methods Mol Biol; 2018; 1852():107-115. PubMed ID: 30109627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum.
    Munier M; Jubeau S; Wijaya A; Morançais M; Dumay J; Marchal L; Jaouen P; Fleurence J
    Food Chem; 2014 May; 150():400-7. PubMed ID: 24360468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step chromatographic procedure for purification of B-phycoerythrin from Porphyridium cruentum.
    Tang Z; Jilu Zhao ; Ju B; Li W; Wen S; Pu Y; Qin S
    Protein Expr Purif; 2016 Jul; 123():70-4. PubMed ID: 26851659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum.
    Gilbert-López B; Barranco A; Herrero M; Cifuentes A; Ibáñez E
    Food Res Int; 2017 Sep; 99(Pt 3):1056-1065. PubMed ID: 28865617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-continuous immobilized cultivation of Porphyridium cruentum for sulfated polysaccharides production.
    Han SI; Jeon MS; Park YH; Kim S; Choi YE
    Bioresour Technol; 2021 Dec; 341():125816. PubMed ID: 34454230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotenoid profiling of five microalgae species from large-scale production.
    Di Lena G; Casini I; Lucarini M; Lombardi-Boccia G
    Food Res Int; 2019 Jun; 120():810-818. PubMed ID: 31000301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simplified two-stage method to B-phycoerythrin recovery from Porphyridium cruentum.
    Benavides J; Rito-Palomares M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Nov; 844(1):39-44. PubMed ID: 16860005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical changes in microalga Porphyridium cruentum associated with silver nanoparticles biosynthesis.
    Cepoi L; Rudi L; Zinicovscaia I; Chiriac T; Miscu V; Rudic V
    Arch Microbiol; 2021 May; 203(4):1547-1554. PubMed ID: 33399893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of clean extraction methods to isolate carotenoids from the microalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry.
    Castro-Puyana M; Herrero M; Urreta I; Mendiola JA; Cifuentes A; Ibáñez E; Suárez-Alvarez S
    Anal Bioanal Chem; 2013 May; 405(13):4607-16. PubMed ID: 23314588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressurized liquid extraction with ethanol as a green and efficient technology to lipid extraction of Isochrysis biomass.
    He Y; Huang Z; Zhong C; Guo Z; Chen B
    Bioresour Technol; 2019 Dec; 293():122049. PubMed ID: 31484103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.