These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 31009991)
1. Development of a Green Downstream Process for the Valorization of Gallego R; Martínez M; Cifuentes A; Ibáñez E; Herrero M Molecules; 2019 Apr; 24(8):. PubMed ID: 31009991 [TBL] [Abstract][Full Text] [Related]
2. Ultrasound-based strategies for the recovery of microalgal carotenoids: Insights from green extraction methods to UV/MS-based identification. Zazirna M; Tischler S; Marko D; Varga E; Castejón N Food Res Int; 2024 Jul; 187():114354. PubMed ID: 38763639 [TBL] [Abstract][Full Text] [Related]
3. Amaro HM; Guedes AC; Preto MAC; Sousa-Pinto I; Malcata FX Mar Drugs; 2018 Sep; 16(9):. PubMed ID: 30208611 [TBL] [Abstract][Full Text] [Related]
4. Effect of Pseudoalteromonas sp. MEBiC 03485 on biomass production and sulfated polysaccharide biosynthesis in Porphyridium cruentum UTEX 161. Han SI; Jeon MS; Heo YM; Kim S; Choi YE Bioresour Technol; 2020 Apr; 302():122791. PubMed ID: 31981805 [TBL] [Abstract][Full Text] [Related]
5. Cold stress treatment enhances production of metabolites and biodiesel feedstock in Porphyridium cruentum via adjustment of cell membrane fluidity. Huang JJ; Cheung PCK Sci Total Environ; 2021 Aug; 780():146612. PubMed ID: 34030318 [TBL] [Abstract][Full Text] [Related]
6. Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata. Montalescot V; Rinaldi T; Touchard R; Jubeau S; Frappart M; Jaouen P; Bourseau P; Marchal L Bioresour Technol; 2015 Nov; 196():339-46. PubMed ID: 26253918 [TBL] [Abstract][Full Text] [Related]
7. Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum. Lutzu GA; Zhang L; Zhang Z; Liu T Bioprocess Biosyst Eng; 2017 Jan; 40(1):73-83. PubMed ID: 27614620 [TBL] [Abstract][Full Text] [Related]
8. Impact of different sequences of mechanical and thermal processing on the rheological properties of Porphyridium cruentum and Chlorella vulgaris as functional food ingredients. Bernaerts TMM; Panozzo A; Verhaegen KAF; Gheysen L; Foubert I; Moldenaers P; Hendrickx ME; Van Loey AM Food Funct; 2018 Apr; 9(4):2433-2446. PubMed ID: 29632927 [TBL] [Abstract][Full Text] [Related]
9. Bioprocess intensification: a potential aqueous two-phase process for the primary recovery of B-phycoerythrin from Porphyridium cruentum. Benavides J; Rito-Palomares M J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Jul; 807(1):33-8. PubMed ID: 15177157 [TBL] [Abstract][Full Text] [Related]
10. Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography. Bermejo R; Acién FG; Ibáñez MJ; Fernández JM; Molina E; Alvarez-Pez JM J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Jun; 790(1-2):317-25. PubMed ID: 12767340 [TBL] [Abstract][Full Text] [Related]
11. Preparative Recovery of Carotenoids from Microalgal Biomass. Cerón García MDC; González López CV; Fernández Sevilla JM; Molina Grima E Methods Mol Biol; 2018; 1852():107-115. PubMed ID: 30109627 [TBL] [Abstract][Full Text] [Related]
12. Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Munier M; Jubeau S; Wijaya A; Morançais M; Dumay J; Marchal L; Jaouen P; Fleurence J Food Chem; 2014 May; 150():400-7. PubMed ID: 24360468 [TBL] [Abstract][Full Text] [Related]
13. One-step chromatographic procedure for purification of B-phycoerythrin from Porphyridium cruentum. Tang Z; Jilu Zhao ; Ju B; Li W; Wen S; Pu Y; Qin S Protein Expr Purif; 2016 Jul; 123():70-4. PubMed ID: 26851659 [TBL] [Abstract][Full Text] [Related]
14. Immunomodulatory, Antioxidant Activity and Cytotoxic Effect of Sulfated Polysaccharides from Casas-Arrojo V; Decara J; de Los Ángeles Arrojo-Agudo M; Pérez-Manríquez C; Abdala-Díaz RT Biomolecules; 2021 Mar; 11(4):. PubMed ID: 33805009 [No Abstract] [Full Text] [Related]
15. Alternative green solvents associated with ultrasound-assisted extraction: A green chemistry approach for the extraction of carotenoids and chlorophylls from microalgae. Fernandes AS; Caetano PA; Jacob-Lopes E; Zepka LQ; de Rosso VV Food Chem; 2024 Oct; 455():139939. PubMed ID: 38870585 [TBL] [Abstract][Full Text] [Related]
16. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Gilbert-López B; Barranco A; Herrero M; Cifuentes A; Ibáñez E Food Res Int; 2017 Sep; 99(Pt 3):1056-1065. PubMed ID: 28865617 [TBL] [Abstract][Full Text] [Related]
17. Semi-continuous immobilized cultivation of Porphyridium cruentum for sulfated polysaccharides production. Han SI; Jeon MS; Park YH; Kim S; Choi YE Bioresour Technol; 2021 Dec; 341():125816. PubMed ID: 34454230 [TBL] [Abstract][Full Text] [Related]
18. Carotenoid profiling of five microalgae species from large-scale production. Di Lena G; Casini I; Lucarini M; Lombardi-Boccia G Food Res Int; 2019 Jun; 120():810-818. PubMed ID: 31000301 [TBL] [Abstract][Full Text] [Related]
19. Simplified two-stage method to B-phycoerythrin recovery from Porphyridium cruentum. Benavides J; Rito-Palomares M J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Nov; 844(1):39-44. PubMed ID: 16860005 [TBL] [Abstract][Full Text] [Related]