These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31010041)

  • 21. Germination of Bacillus cereus spores adhered to stainless steel.
    Hornstra LM; de Leeuw PL; Moezelaar R; Wolbert EJ; de Vries YP; de Vos WM; Abee T
    Int J Food Microbiol; 2007 May; 116(3):367-71. PubMed ID: 17408793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage.
    Lücking G; Stoeckel M; Atamer Z; Hinrichs J; Ehling-Schulz M
    Int J Food Microbiol; 2013 Sep; 166(2):270-9. PubMed ID: 23973839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of Bacillus species in biofilm persistence and emerging antibiofilm strategies in the dairy industry.
    Shemesh M; Ostrov I
    J Sci Food Agric; 2020 Apr; 100(6):2327-2336. PubMed ID: 31975392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of Incubation Conditions on Biofilm Formation by
    Rossi C; Chaves-López C; Serio A; Goffredo E; Goga BT; Paparella A
    Ital J Food Saf; 2016 Jun; 5(3):5793. PubMed ID: 27853712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial Evaluation of the Biotransfer Potential from Surfaces with Bacillus Biofilms after Rinsing and Cleaning Procedures in Closed Food-Processing Systems.
    Wirtanen G; Husmark U; Mattila-Sandholm T
    J Food Prot; 1996 Jul; 59(7):727-733. PubMed ID: 31159081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of mechanical vs. chemical action in the removal of adherent Bacillus spores during CIP procedures.
    Faille C; Bénézech T; Blel W; Ronse A; Ronse G; Clarisse M; Slomianny C
    Food Microbiol; 2013 Apr; 33(2):149-57. PubMed ID: 23200646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cleaning effectiveness of chlorine-free detergents for use on dairy farms.
    Sundberg M; Christiansson A; Lindahl C; Wahlund L; Birgersson C
    J Dairy Res; 2011 Feb; 78(1):105-10. PubMed ID: 21134310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitory Effects of Combinations of Chemicals on Escherichia coli, Bacillus cereus, and Staphylococcus aureus Biofilms during the Clean-in-Place Process at an Experimental Dairy Plant.
    Lee ES; Kim JH; Oh MH
    J Food Prot; 2020 Aug; 83(8):1302-1306. PubMed ID: 32236563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of fungal proteases potentially suitable for environmentally friendly cleaning-in-place in the dairy industry.
    Boyce A; Walsh G
    Chemosphere; 2012 Jun; 88(2):211-8. PubMed ID: 22464862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative assessment of the efficacy of spiral-wound membrane cleaning procedures to remove biofilms.
    Hijnen WA; Castillo C; Brouwer-Hanzens AH; Harmsen DJ; Cornelissen ER; van der Kooij D
    Water Res; 2012 Dec; 46(19):6369-81. PubMed ID: 23021522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superhydrophobic Wax Coatings for Prevention of Biofilm Establishment in Dairy Food.
    Ostrov I; Polishchuk I; Shemesh M; Pokroy B
    ACS Appl Bio Mater; 2019 Nov; 2(11):4932-4940. PubMed ID: 35021493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Feed substrates influence biofilm formation on reverse osmosis membranes and their cleaning efficiency.
    Marka S; Anand S
    J Dairy Sci; 2018 Jan; 101(1):84-95. PubMed ID: 29103718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of the potential suitability of selected commercially available enzymes for cleaning-in-place (CIP) in the dairy industry.
    Boyce A; Piterina AV; Walsh G
    Biofouling; 2010 Oct; 26(7):837-50. PubMed ID: 20931416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation.
    Stanley NR; Lazazzera BA
    Mol Microbiol; 2005 Aug; 57(4):1143-58. PubMed ID: 16091050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of a new regeneration process by adsorption-coagulation and flocculation on the physicochemical properties and the detergent efficiency of regenerated cleaning solutions.
    Blel W; Dif M; Sire O
    J Environ Manage; 2015 May; 155():1-10. PubMed ID: 25770957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic interactions in multispecies biofilm combinations of bacterial isolates recovered from diverse food processing industries.
    Sadiq FA; De Reu K; Burmølle M; Maes S; Heyndrickx M
    Front Microbiol; 2023; 14():1159434. PubMed ID: 37125177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resistance of the constitutive microflora of biofilms formed on whey reverse-osmosis membranes to individual cleaning steps of a typical clean-in-place protocol.
    Anand S; Singh D
    J Dairy Sci; 2013 Oct; 96(10):6213-22. PubMed ID: 23958024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential Probiotics Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 Co-Aggregate with Clinical Isolates of Proteus mirabilis and Prevent Biofilm Formation.
    Algburi A; Alazzawi SA; Al-Ezzy AIA; Weeks R; Chistyakov V; Chikindas ML
    Probiotics Antimicrob Proteins; 2020 Dec; 12(4):1471-1483. PubMed ID: 31989448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of the effect of cleaning regimes on biofilms of thermophilic bacilli on stainless steel.
    Parkar SG; Flint SH; Brooks JD
    J Appl Microbiol; 2004; 96(1):110-6. PubMed ID: 14678164
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Tirloni E; Stella S; Celandroni F; Mazzantini D; Bernardi C; Ghelardi E
    Foods; 2022 Aug; 11(17):. PubMed ID: 36076758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.