These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 31010124)
1. How Humic Acids Affect the Rheological and Transport Properties of Hydrogels. Klucakova M; Smilek J; Sedlacek P Molecules; 2019 Apr; 24(8):. PubMed ID: 31010124 [TBL] [Abstract][Full Text] [Related]
2. Agarose Hydrogels Enriched by Humic Acids as the Complexation Agent. Klučáková M Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32204449 [TBL] [Abstract][Full Text] [Related]
3. On the role of humic acids' carboxyl groups in the binding of charged organic compounds. Smilek J; Sedláček P; Kalina M; Klučáková M Chemosphere; 2015 Nov; 138():503-10. PubMed ID: 26203865 [TBL] [Abstract][Full Text] [Related]
4. Transport of Organic Compounds Through Porous Systems Containing Humic Acids. Smilek J; Sedlacek P; Lastuvkova M; Kalina M; Klucakova M Bull Environ Contam Toxicol; 2017 Mar; 98(3):373-377. PubMed ID: 27660188 [TBL] [Abstract][Full Text] [Related]
5. How the Supramolecular Nature of Lignohumate Affects Its Diffusion in Agarose Hydrogel. Klučáková M; Kalina M; Enev V Molecules; 2020 Dec; 25(24):. PubMed ID: 33321956 [TBL] [Abstract][Full Text] [Related]
6. The Effect of Supramolecular Humic Acids on the Diffusivity of Metal Ions in Agarose Hydrogel. Klučáková M Molecules; 2022 Feb; 27(3):. PubMed ID: 35164280 [TBL] [Abstract][Full Text] [Related]
7. Migration of copper(II) ions in humic systems-effect of incorporated calcium(II), magnesium(II), and iron(III) ions. Klučáková M; Enev V Environ Sci Pollut Res Int; 2024 Aug; 31(40):52996-53007. PubMed ID: 39167144 [TBL] [Abstract][Full Text] [Related]
8. How the Addition of Chitosan Affects the Transport and Rheological Properties of Agarose Hydrogels. Klučáková M Gels; 2023 Jan; 9(2):. PubMed ID: 36826269 [TBL] [Abstract][Full Text] [Related]
9. Pseudopeptide-Based Hydrogels Trapping Methylene Blue and Eosin Y. Milli L; Zanna N; Merlettini A; Di Giosia M; Calvaresi M; Focarete ML; Tomasini C Chemistry; 2016 Aug; 22(34):12106-12. PubMed ID: 27417509 [TBL] [Abstract][Full Text] [Related]
10. Bio-Based Hydrogels Composed of Humic Matter and Pectins of Different Degree of Methyl-Esterification. Nuzzo A; Mazzei P; Savy D; Di Meo V; Piccolo A Molecules; 2020 Jun; 25(12):. PubMed ID: 32630609 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of xylan-gelatin cross-linked reusable hydrogel for the adsorption of methylene blue. Seera SDK; Kundu D; Gami P; Naik PK; Banerjee T Carbohydr Polym; 2021 Mar; 256():117520. PubMed ID: 33483041 [TBL] [Abstract][Full Text] [Related]
12. Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polyacrylamide/clay hybrid hydrogels. Yi JZ; Zhang LM Bioresour Technol; 2008 May; 99(7):2182-6. PubMed ID: 17601732 [TBL] [Abstract][Full Text] [Related]
13. A protocol for rheological characterization of hydrogels for tissue engineering strategies. Zuidema JM; Rivet CJ; Gilbert RJ; Morrison FA J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1063-73. PubMed ID: 24357498 [TBL] [Abstract][Full Text] [Related]
14. Self-Healing Metallo-Supramolecular Hydrogel Based on Specific Ni Xu X; Jerca VV; Hoogenboom R Macromol Rapid Commun; 2020 Feb; 41(4):e1900457. PubMed ID: 31971647 [TBL] [Abstract][Full Text] [Related]
15. Differential physical, rheological, and biological properties of rapid in situ gelable hydrogels composed of oxidized alginate and gelatin derived from marine or porcine sources. Liao H; Zhang H; Chen W J Mater Sci Mater Med; 2009 Jun; 20(6):1263-71. PubMed ID: 19184370 [TBL] [Abstract][Full Text] [Related]
16. Chemodynamics of soft nanoparticulate complexes: Cu(II) and Ni(II) complexes with fulvic acids and aquatic humic acids. Town RM; van Leeuwen HP; Buffle J Environ Sci Technol; 2012 Oct; 46(19):10487-98. PubMed ID: 22934531 [TBL] [Abstract][Full Text] [Related]
17. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis. Suriano R; Griffini G; Chiari M; Levi M; Turri S J Mech Behav Biomed Mater; 2014 Feb; 30():339-46. PubMed ID: 24368174 [TBL] [Abstract][Full Text] [Related]
18. Injectable and Glucose-Responsive Hydrogels Based on Boronic Acid-Glucose Complexation. Dong Y; Wang W; Veiseh O; Appel EA; Xue K; Webber MJ; Tang BC; Yang XW; Weir GC; Langer R; Anderson DG Langmuir; 2016 Aug; 32(34):8743-7. PubMed ID: 27455412 [TBL] [Abstract][Full Text] [Related]
19. Adsorption properties of β-cyclodextrin modified hydrogel for methylene blue. Wang JW; Lan Dai ; Yong-Qiang Liu ; Li RF; Yang XT; Lan GH; Qiu HY; Xu B Carbohydr Res; 2021 Mar; 501():108276. PubMed ID: 33662813 [TBL] [Abstract][Full Text] [Related]
20. Rheological properties of wood/bacterial cellulose and chitin nano-hydrogels as a function of concentration and their nano-films properties. Jannatamani H; Motamedzadegan A; Farsi M; Yousefi H IET Nanobiotechnol; 2022 Jun; 16(4):158-169. PubMed ID: 35377555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]